
The VLDB Journal (2016) 25:151–169
DOI 10.1007/s00778-015-0407-0

REGULAR PAPER

RailwayDB: adaptive storage of interaction graphs

Robert Soulé1 · Buğra Gedik2

Received: 13 April 2015 / Revised: 17 September 2015 / Accepted: 6 October 2015 / Published online: 16 October 2015
© Springer-Verlag Berlin Heidelberg 2015

Abstract We are living in an ever more connected world,
where data recording the interactions between people, soft-
ware systems, and the physical world is becoming increas-
ingly prevalent. These data often take the form of a tempo-
rally evolving graph, where entities are the vertices and the
interactions between them are the edges.We call such graphs
interaction graphs. Various domains, including telecom-
munications, transportation, and social media, depend on
analytics performed on interaction graphs. The ability to
efficiently support historical analysis over interaction graphs
requires effective solutions for the problem of data layout on
disk. This paper presents an adaptive disk layout called the
railway layout for optimizing disk block storage for inter-
action graphs. The key idea is to divide blocks into one or
more sub-blocks. Each sub-block contains the entire graph
structure, but only a subset of the attributes. This improves
query I/O, at the cost of increased storage overhead. We
introduce optimal integer linear program (ILP) formulations
for partitioning disk blocks into sub-blocks with overlap-
ping and nonoverlapping attributes. Additionally, we present
greedy heuristics that can scale better compared to the ILP
alternatives, yet achieve close to optimal query I/O. We pro-
vide an implementation of the railway layout as part of
RailwayDB—an open-source graph database we have devel-
oped. To demonstrate the benefits of the railway layout,
we provide an extensive experimental evaluation, includ-

B Robert Soulé
robert.soule@usi.ch

Buğra Gedik
bgedik@cs.bilkent.edu.tr

1 Faculty of Informatics, Università della Svizzera italiana,
Lugano, Switzerland

2 Department of Computer Engineering, Bilkent University,
Ankara, Turkey

ing model-based as well as empirical results comparing our
approach to baseline alternatives.

Keywords Interaction graphs · Adaptive storage · I/O
optimization

1 Introduction

We are living in an ever more connected world, where the
data generated by people, software systems, and the phys-
ical world are more accessible than before and are much
larger in volume, variety, and velocity. In many application
domains, such as telecommunications, transportation, and
social media, live data recording the interactions between
people, systems, and the environment is available for analy-
sis. These data often take the form of a temporally evolving
graph, where entities are the vertices and the interactions
between them are the edges. We call such graphs interaction
graphs.

Data analytics performed on interaction graphs can bring
new business insights and improve decision making. For
instance, the graph structure may represent the interactions
in a social network, where finding communities in the graph
can facilitate targeted advertising. In the telecommunications
(telco) domain, call details records (CDRs) can be used to
capture the call interactions between people, and locating
closely connected groups of people can be used for generat-
ing promotions.

Interaction graphs are temporal in nature, andmore impor-
tantly, they are append-only. This is in contrast to relationship
graphs, which are updated via insertion and deletion opera-
tions. An example of a relationship graph is a social network
capturing the follower–followee relationship among users.
Examples of interactions graphs include CDR graphs cap-

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00778-015-0407-0&domain=pdf

152 R. Soulé, B. Gedik

turing calls between telco customers or mention graphs
capturing interactions between users of amicro-blogging ser-
vice, like Twitter.

Since interaction graphs can potentially grow forever, they
present a storage challenge for system designers. Even on
modern servers with large amounts of memory, one cannot
assume that the entire graph will fit into the main memory.
The append-only nature of interaction graphs make storing
them on disk a necessity. Furthermore, the analysis of this
historical interaction data forms an important part of the ana-
lytical landscape.

The ability to efficiently support historical analysis over
interaction graphs requires effective solutions for the prob-
lem of data layout on disk. Most graph algorithms are
characterized by locality of access [1], which is a direct result
of the traversal-based nature of most of the graph algorithms.
This is often taken advantage of by co-locating edges in close
proximity within the same disk blocks [2]. This way, once a
disk block is loaded into main memory buffers, several edges
from it can be used for processing, reducing the disk I/O.

In interaction graphs, the locality of access is even more
pronounced. First, the analysis to be performed on the inter-
actions can be restricted to a temporal view of the graph, such
as finding the influential users over a given week of interac-
tions. This means that edges that are temporally close are
accessed together. Second, traversals are again key to many
graph algorithms, such as connected components, clustering
coefficient, and PageRank. This means that edges that are
close in terms of the path between their incident vertices and
their timestamps should be located together with the same
blocks. In our earlier work [3], we introduced an interaction
graph database that works on this principle of access local-
ity. It uses a disk organization that consists of a set of blocks,
each containing a list of temporal neighbor lists. A temporal
neighbor list contains a head vertex and a set of incident edges
within a time range. The layout optimizer aims at bringing
together, into the same disk block, temporal neighbor lists
that are (i) close in terms of their temporal ranges, (ii) have
many edges between them, and (iii) have few edges going
into temporal neighbor lists outside the block.

Many real-world graph databases contain attributes. In
the case of interaction graphs, the attributes can be con-
sidered as properties associated with the edges representing
the interactions. Attributes can be stored in two ways, either
separately (e.g., in a relational table) or locally with the tem-
poral neighbor lists. If they are stored separately, then the
graph database cannot take full advantage of locality opti-
mizations performed for block organization. The database
must go back and forth between the disk blocks to access
the edge attributes. On the other hand, if attributes are stored
locally within the disk blocks containing the graph structure,
then there can be significant overhead due to disk I/O when
only a few attributes are needed to answer a query.

To query an interaction graph, most algorithms traverse
the graph structure to access the relevant attributes. Fre-
quently, there are correlations among the attributes accessed
by different queries. For example, queries q1 and q5 might
access attributes a1 and a2, while queries q2, q3 and q4 access
attributes a3 and a4. Because interaction graphs are temporal,
the co-access correlations for the attributes can vary for dif-
ferent temporal regions.Moreover, the co-access correlations
might be unknown at the insertion time, but be discovered
later, when the workload is known.

It is widely recognized that query workload and disk lay-
out have a significant impact on database performance [4–6].
For table-based relational databases, this fact has led database
designers to develop alternative approaches for storage lay-
out: Row-oriented storage [7] is more efficient when queries
access many attributes from a small number of records, and
column-oriented storage [8] is more efficient when queries
access a small number of attributes from many records [6].
Unfortunately, although interaction graph databases, like
relational databases, are the target of diverse query work-
loads, there is no clear correspondence to a row-oriented or
column-oriented storage layout.

This paper presents an adaptive disk layout called the rail-
way layout and associated algorithms for optimizing disk
block storage for interaction graphs. The key idea is to divide
blocks into one or more sub-blocks, where each sub-block
contains a subset of the attributes (potentially overlapping),
but the entire graph structure is replicated within each sub-
block. This way, a query can be answered completely by only
reading the sub-blocks that contain the attributes of interest,
reducing the overall I/O. The core concept is equally applica-
ble to relationship graphs, yet themotivation ismuch stronger
for interaction graphs, as the continuously increasing nature
of the interaction graphs rule outs in-memory processing.

There are a number of challenges in achieving an effec-
tive adaptive layout. First, we need to find the partitioning
of attributes that minimizes the query I/O. To address this,
we model the problems of overlapping and nonoverlap-
ping attribute partitioning as integer linear programs (ILPs)
and provide optimal solutions that minimize the query I/O
cost. Second, the query workload and thus the attribute
access pattern can change over time. For this purpose, our
railway layout supports customization of the attribute par-
titioning of sub-blocks on a per-block basis. Third, such
flexibility necessitates online configuration of attribute parti-
tioning as the query workload evolves, which in turn requires
fast algorithms for performing the attribute partitioning. For
this purpose, we develop greedy heuristic algorithms for
both overlapping and nonoverlapping partitioning scenarios.
These algorithms can scale to larger numbers of attributes,
yet provide close to optimal query I/O performance. Finally,
the railway layout trades off storage space to gain improved
query I/O performance. The storage overhead is more pro-

123

RailwayDB: adaptive storage of interaction graphs 153

nounced for the case of overlapping partitioning. To address
this, we limit the amount of storage overhead that can be tol-
erated, and integrate this limit to both our ILP formulations,
as well as our greedy heuristics.

We implemented railway layout as part of RailwayDB—
an open-source graph database developed as a testbed for our
research. To demonstrate the benefits of the railway layout,
we provide an extensive experimental evaluation, includ-
ing both model-based and empirical results comparing our
approach to baseline alternatives. The results show that, for a
storage increase of just 25%, the optimal overlapping parti-
tioning algorithm reduces the query I/O cost by 45%. When
allowed to double the storage usage, the overlapping par-
titioning algorithm can reduce the I/O cost by 73%. The
heuristic algorithm performs almost as well, reducing the
I/O cost by 72%, but cuts the running time needed to find a
solution by orders of magnitude.

In summary, this papermakes the following contributions:

– We introduce the railway layout for adaptive organization
of interaction graphs on disk.

– We introduce optimal ILP formulations for partition-
ing disk blocks into sub-blocks with overlapping and
nonoverlapping attributes, given a query workload. Our
formulation also support upper bounding the amount of
storage overhead introduced as a result of the railway
layout.

– To support online adaptation, we develop greedy heuris-
tics that can scale better compared to the ILP alternatives,
yet achieve close to optimal query I/O.

– We describe a practical implementation of the railway
layout within our open-source RailwayDB.

– We provide an extensive experimental study comparing
our approach to a few baseline alternatives.

The rest of the paper is organized as follows. Section 2
gives an overview of the railway layout in the context of an
interaction database and motivates its design. Section 3 for-
malizes the optimal railway layout design problem. Section 4
gives integer linear programming formulation of the opti-
mal layout for overlapping and nonoverlapping scenarios.
Section 5 introduces our heuristic solutions for the same. Sec-
tion 6 describes our design of an interaction graph database
using the railway layout. Section 7 presents the implemen-
tation details. Section 8 reports an experimental evaluation
of our system. Section 9 discusses related work and Sect. 10
concludes the paper.

2 Adaptive storage overview

The design of the railway disk layout builds on our prior
work [3], which organized the disk layout for interaction
graph databases to improve access locality. However, that

work did not consider the I/O cost due to the edge attributes,
which is the major contributor to the total disk I/O during
query processing. The railway layout addresses this issue by
enabling the system to adapt the layout to changing work-
loads, with the goal of reducing the disk I/O during querying,
in exchange for a slight increase in the disk space used to store
the graph.

2.1 Interaction graphs

Several systems have previously used the term interaction
graph in an informal way [3,9,10]. For this paper, we
assume a discrete, ordered time domain, T , and a domain
of attributes, A. We make no assumptions about the val-
ues of those attributes. An interaction graph is an ordered
pair I = (V, E) such that V is a set of vertices and
E ⊆ {(τ, u, l, v) : u, v ∈ V ∧ τ ∈ T ∧ l ⊆ A} is a set of
interactions. Each interaction (τ, u, l, v) has a timestamp τ ,
a source vertex u, a destination vertex v, and a set of attributes
l. Interaction graphs support append-only write operations.
They may be queried by specifying a time range [ts, te], and
operations such as selection and projection which should be
applied to the attributes of the edges that fall in the time range.
Queries may also take a source vertex, s, as an additional
parameter, in which case the query only examines attributes
on edges incident to s.

2.2 Motivating example

To explain the design of the railway layout, we first introduce
a small, motivating example. Figure 1 shows a graph for the

Alice

Dave

Bob

Carl

ts = 12:10,
(local?=false, duration=500,

tower=5, imei=200)

ts = 14:20,
(local?=false, duration=300,

tower=2, imei=300)

ts=15:45,
(local?=true, duration=600,

tower=5, imei=200)

ts=13:40,
(local?=true, duration=400,

tower=1, imei=100)

Fig. 1 A partial example interaction graph for call data records, cap-
turing the telephone calls among a set of people. The running example
focuses on a subgraph indicated by the nodes colored white. Each edge
in the graph is associated with attributes for the interaction, including
the time the call was placed, whether the call was local, the duration
of the call, the cell phone tower, and the IMEI number identifying the
device used

123

154 R. Soulé, B. Gedik

telephone call interactions among a set of people. Each node
in the graph represents a person, and each edge in the graph
represents a phone call from a caller to a callee. Each edge
is associated with a set of attributes that maintain the details
of the interaction, including the time the call was placed,
whether the call was local or long distance, the duration of the
call, the cell phone tower, and the IMEI number identifying
the device used to place the call. Thus, the schema for the
edges in the graph is as follows1:

call(local?, duration, tower, imei)

Recall that interaction graphs are append-only and evolve
over time. In other words, new timestamped edges are con-
tinuously added to the graph. For explanatory purposes, we
focus on a subset of a graph at a particular time range. In
the figure, the subset is indicated by the white nodes and
the edges between them. In this subset, there were four call
interactions. One of them was a local call from Alice to Bob,
starting at 13:40. They spoke for 400 seconds. The call was
made from cell phone tower 1, and the Alice’s phone had an
IMEI number of 100.

A telecommunications company performs various ana-
lytics by processing the graph. For example, in order to
understand how they should price their service plans, they
might want to capture the duration of all calls for each user.
To plan for infrastructure provisioning, they might want to
record a count of the number of calls that each cell phone
tower handled.

In an interaction graph, queries are associated with a time
range, [tstart , tend]. To answer queries, the graph database
system must traverse the subgraph that contains edges with
timestamp t , such that tstart ≤ t ≤ tend . As the system
traverses the graph, it reads the relevant attributes to answer
the query. Note that a query might access all or some of
the attributes. As concrete examples, imagine we have two
queries. Queryq1 asks for the average duration for calls from
each tower, broken down by local or nonlocal nature of the
calls. Query q2 asks for the count of calls made by each type
of device. In other words, we say that each query accesses a
subset of the attributes:

q1 = {local?, duration, tower}, q2 = {imei}

2.3 Storage for locality

There are several ways in which one might store a graph on
disk. The graph structure can be stored as a matrix represen-
tation or an adjacency list. Most graph databases choose an
adjacency list representation because they reduce the storage
overhead when graphs are sparse, and it is faster to iterate

1 Since time is an implicit part of an interaction, we do not show it as
part of the schema.

Head=Alice Count=1 ts=13:40 neighbor=Bob

local?=false duration=400 tower=1 imei=100

Head=Carl Count=2 ts=12:10 neighbor=Alice

local?=false duration=500 tower=5 imei=200

ts=15:45 neighbor=Dave local?=true duration=600

tower=5 imei=200 Head=Dave Count=1

ts=14:20 neighbor=Bob local?=false duration=300

tower=2 imei=300

Head=Alice Count=1 ts=13:40 neighbor=Bob

imei=100 Head=Carl Count=2 ts=12:10

neighbor=Alice imei=200 ts=15:45 neighbor=Dave

imei=200 Head=Dave Count=1 ts=14:20

neighbor=Bob imei=300

Head=Alice Count=1 ts=13:40 neighbor=Bob

local?=false duration=400 tower=1 Head=Carl

Count=2 ts=12:10 neighbor=Alice local?=false

duration=500 tower=5 ts=15:45 neighbor=Dave

local?=true duration=600 tower=5 Head=Dave

Count=1 ts=14:20 neighbor=Bob local?=false

duration=300 tower=2

Fig. 2 Standard disk block storage for an interaction graph, and a parti-
tioning into sub-blocks for the railway layout. Each sub-blockmaintains
its own copy of the neighbor list, and a subset of the attributes

over the edges when traversing the graph. Attributes associ-
ated with each edge could be stored separately in a relational
table, or along with the edges. Storing the attributes with the
edges improves the locality, since the database can read the
graph structure and associated attributes from the same disk
block. To improve locality, typical disk layout schemes try
to group as many adjacent nodes as possible in the same disk
block.

Building on this basic design, our prior work [3] extended
the notion of locality to include a temporal dimension for
handling interaction graphs. Nodes are placed in the same
block if they are close together both spatially and tempo-
rally. Based on the edge timestamps, the adjacency lists are
divided into multiple pieces, and based on closeness of the
nodes within the graph, these partial adjacency lists are com-
bined into blocks. The locality of a block is determined by
its conductance (i.e., the percentage of edges going out of a
block) and its cohesiveness (i.e., a metric used to find highly
connected components). Our earlier work describes a greedy
algorithm for forming disk blocks with respect to this notion
of locality.

Once the algorithm divides the graph into disk blocks, the
graph data and attributes are stored in the layout scheme illus-
trated in the top of Fig. 2. Note that this is an adjacency list
representation in which attributes are stored with the edges.
Each disk block contains a sequence of vertices, identified

123

RailwayDB: adaptive storage of interaction graphs 155

by a head-node id, followed by a count of the number of
neighbors, and then the neighbor list itself. Each entry in the
neighbor list is composed of a timestamp, an id for the des-
tination vertex, and the properties for that edge. In the top of
Fig. 2, all of the information from the example interaction
subgraph is stored in a single disk block.

2.4 Railway layout

This paper introduces a new disk layout scheme, called
the railway layout illustrated in the bottom of Fig. 2. With
the railway layout scheme, blocks are partitioned into sub-
blocks, such that each sub-block contains the adjacency list
representation from the original block, but only a subset of
the attributes. The subset of attributes assigned to each sub-
block is determined by the query workload.

For example, given queries q1 and q2, the railway lay-
out would store the attributes local?, duration, and
tower in one sub-block, and the attribute imei in a second
sub-block. In the ideal case, a query can be answered com-
pletely by reading a single sub-block that contains only the
relevant information and none of the irrelevant information,
reducing the overall I/O cost. Of course, this layout comes
at the expense of storage, as the graph structure information
is duplicated in each sub-block. We argue that in general,
I/O cost is more important than storage overhead, because a
certain level of storage overhead can be accommodated by

adding additional disks. In Sects. 3 and 5, we will present
our optimal and heuristic algorithms for discovering the sub-
block partitions that keep the overhead below a user-specified
threshold, while minimizing the disk I/O for the queries.

2.5 Adaptation

Because interaction graphs are append-only, and new edges
are continuously added, there is a unique opportunity to
adapt the disk layout with changing workloads over time. A
database system utilizing the railway layout design can con-
tinually monitor the workload, and re-adjust the disk layout
for historical data. This is illustrated in Fig. 3. In the figure,
we have an interaction graph with four attributes, namely a,
b, c, and d. Initially, without any workload optimization, all
disk blocks have a single sub-block that contains the entire
set of attributes. This is shown in the upper half of the figure.
After some time, the database adapts to the workload. This
is shown in the lower half of the figure. We see that blocks
from different time ranges have adapted differently, as the
workload they observe is different. For instance, blocks BX

and BY were partitioned into two sub-blocks as {a, b, c} and
{c, d}, whereas blocks BZ and BU were partitioned into three
sub-blocks as {a}, {b, c}, and {c, d}, and the blocks BV and
BW stayed intact as {a, b, c, d}. A partition index is kept to
track the partitioning of blocks in different time regions of

… …

a, b, c

c, d

edge mestamps

a

b, c

c, d

a

b, c

c, d

a, b, c, d

a, b, c, d

a, b, c

c, d

t0 t1 t2 t3

Par on Index
[t0, t1) -> {a, b, c}, {c, d}
[t1, t2) -> {a}, {b, c}, {c, d}
[t2, t3) -> {a, b, c, d}
…

workload
agnostic

… …

a, b, c, d

a, b, c, d

a, b, c, d

a, b, c, d

a, b, c, d

a, b, c, d

Par on Index
[t0, t3) -> {a, b, c, d}
…

Bx

By Bz

Bu

Bv

Bw

workload
adapted

Bx

By

Bz

Bu

Bv

Bw

e
mit

Fig. 3 A database system implementing the railway layout will adapt the disk storage over time

123

156 R. Soulé, B. Gedik

the interaction graph, which is shown on the right-hand side
of the figure.

Sections 3, 4, and 5 of this paper focus on the problem
of how to determine the best partitioning for a given work-
load, which is the key capability that enables the adaptation.
Sections 6 and 7 describe how the system is implemented in
practice.

3 Disk block partitioning problem

The optimal railway design concerns the partitioning of disk
blocks into sub-blocks such that the query I/O is minimized,
while the storage overhead induced is kept below a desired
threshold. This optimization is guided by the query workload
observed by the disk blocks within a given time range. Thus,
the optimization problem is localized to a sequence of disk
blocks that are in the same temporal range and thepartitioning
used for the sub-blocks created could be potentially different
for disk blocks from different time ranges.

The partitioning of disk blocks into sub-blocks can be
nonoverlapping or overlapping. In the nonoverlapping case,
the attributes are partitioned among the sub-blocks with no
overlap (i.e., a true partitioning). In the overlapping case, the
subset of attributes contained within sub-blocks can overlap
(i.e., an attribute can appear in multiple partitions). In both
cases, the complete graph structure for the block is replicated
within the sub-blocks, which results in a storage overhead.

In both overlapping and nonoverlapping partitioning, we
trade increased storage overhead for reduced query I/O cost.
In the overlapping case, the increase in the storage overhead is
higher, as some of the attributes are replicated, in addition to
the graph structure. On the other hand, enabling overlapping
attributes is expected to reduce the query I/O (in the extreme
case, there could be one sub-block per query). While the
nonoverlapping partitioning scenario is a special case of the
overlapping one, specialized algorithms can be used to solve
the former problem.

In the rest of this section, we first introduce basic notation
and then formulate the overall optimization problem. The
modeling of the query I/O and storage overhead are presented
next,which complete the formalizationof the optimal railway
design problem.

3.1 Basic notation

Let Q be the query workload, where each query q ∈ Q
accesses a set of attributes q.A and traverses parts of the
graph for the time range q.T = [q.ts, q.te]. Note that when
we refer to a query, we mean query kind. That is, if q1 is
“all calls with a duration > 100” and q2 is “all calls with
a duration > 500”, then they have the same kind, as they
only access the duration attribute. We denote the set of

all attributes as A. Given a block B, we denote its time range
as B.T , which is the union of the time ranges of its temporal
neighbor lists. Let s(a) denote the size of an attribute a. We
use cn(B) to denote the number of temporal neighbor lists
within block B and ce(B) to denote the total number of edges
in the temporal neighbor lists within the block. We overload
the notation for block size and use s(B) to denote the size of
a block B. We have:

s(B) = ce(B) ·
(
16 +

∑
a∈B.A

s(a)
)

+ cn(B) · 12 (1)

Here, 16 corresponds to the cost of storing the edge id and
the timestamp, and 12 corresponds to the cost of storing the
head vertex (8 bytes) plus the number of entries (4 bytes) for
a temporal neighbor list.

Our goal is to create a potentially overlapping partitioning
of attributes for block B, resulting in a set of sub-blocks
denoted byP(B). In other words, we have

⋃
B′∈P(B) B

′.A =
A. Here, P denotes the partitioning function.

3.2 Optimization problem

We aim to find the partitioning functionP that minimizes the
query I/O over B, while keeping the storage overhead below
a limit, say 1+α times the original. The original corresponds
to the case of a single block that contains all the attributes. Let
us denote the query I/O as L(P, B) and the storage overhead
as H(P, B). Then our goal is to find:

P ← argmin{P :H(P(B))<α}L(P, B) (2)

3.3 Storage overhead formulation

The storage overhead is defined as the additional amount of
disk space used to store the sub-blocks, normalized by the
original space needed by a single block (no partitioning).
The storage overhead can be formalized as follows, for the
nonoverlapping case:

H(P, B) = (|P(B)| − 1) ·
(
1 − ce(B) · ∑a∈A s(a)

s(B)

)
(3)

Basically, for the nonoverlapping case, there is no over-
head due to the attributes, as they are not repeated. However,
there is overhead for the block structure that is repeated for
each sub-block. There are |P(B)|−1 such extra sub-blocks,
and for each, the contribution to the overhead due to storing
the graph structure is given by s(B) − ce(B) · ∑

a∈A s(a).
Equation 3 has one nice feature, that is, it does not depend on
the details of the attribute partitioning, other than the number
of partitions. We make use of this feature, later for the ILP
formulation of the problem.

123

RailwayDB: adaptive storage of interaction graphs 157

For the general case of overlapping partitioning, we can
formulate the storage overhead as follows:

H(P, B) =
∑

B′∈P(B) s(B
′)

s(B)
− 1 (4)

This formulation follows directly from the definition of
storage overhead. While simple, it depends on the details of
the partitioning, as s(B ′) is the size of a sub-block B ′, which
in turn depends on the list of attributes within the sub-block.

3.4 Query I/O formulation

Let m be a function that maps a query q to the set of sub-
blocks that are accessed to satisfy it for a relevant block B
under a given partitioning P .

For the case of nonoverlapping attributes, the m function
lists all the sub-blocks whose attributes intersect with those
from the query. Formally:

m(P, B, q) = {B ′ : B ′ ∈ P(B) ∧ q.A ∩ B ′.A 	= ∅} (5)

For the case of overlapping attributes, we use a simple
heuristic to define the set of sub-blocks used for answering
the query. Algorithm 1 captures it. The idea is to start with
an empty list of sub-blocks and greedily add new sub-blocks
to it, until all query attributes are covered. At each iteration,
the sub-block that brings the highest relative marginal gain
is picked. The relative marginal gain is defined as the total
size of the attributes from the sub-block that contribute to the
query result, relative to the sub-block size. While computing
the relative marginal gain, attributes that are already covered
by sub-blocks that are selected earlier are not considered as
contributing to the query result.

Algorithm 1: m-overlapping(P, B, q)
Data: P: partitioning function, B: block, q: query
S ← ∅; R ← ∅ � Selected attributes; Resulting sub-blocks
while S ⊂ q.A do � While unselected attributes remain

B ′ ← argmaxB′∈P(B)\R
∑

a∈B′.A∩q.A\S
ce(B′)·s(a)

s(B′) S ← S ∪
B ′.A � Extend the selected attributes
R ← R ∪ B ′ � Extend the selected sub-blocks

return R � Final set of sub-blocks covering query attributes

Given that we have defined the function m that maps a
query to the set of sub-blocks used to answer it, we can now
formalize the total query I/O cost for a block under a given
workload:

L(P, B)=
∑
q∈Q

w(q) · 1(q.T ∩ B.T 	=∅) ·
∑

B′∈m(P,B,q)

s(B ′)

(6)

We simply sum the I/O cost contributions of the queries
to compute the total I/O cost. A query contributes to the total
I/O cost if and only if its time range intersects with that of the
block (1(q.T ∩ B.T 	= ∅)). If it does, then we add the sizes
of all the sub-blocks used to answer the query to the total I/O
cost. Furthermore, we multiply the I/O cost contribution of
a query with its frequency, denoted by w(q) in the formula.

4 ILP solution

In this section, we formulate the optimal railway design prob-
lem as an integer linear program (ILP). The main challenge
is to represent the objective function and the constraint as a
linear combination of potentially integer variables.

For the ILP formulation, we define a number of binary (0
or 1) variables:

– xa,p: 1 if attribute a is in partition p, 0 otherwise.
– yp,q : 1 if partition p is used by query q, 0 otherwise.
– za,p,q : 1 if partition p is used by query q and attribute a
is in partition p, 0 otherwise.

– u p: 1 if partition p is assigned at least 1 attribute, 0 oth-
erwise.

Each of these variables serve a purpose:

– xs define the attribute-to-partition assignments.
– ys help formulate the query I/O contribution of each par-

tition due to the graph structure they contain (excluding
their assigned attributes).

– zs help formulate the query I/O contribution of each par-
tition, only considering the attributes they are assigned.

– us help formulate the storage overhead requirement.

In total, we have |A| · (|A|+1) · (|Q|+1) variables. Here,
we assume that the maximum number of partitions is fixed.
In fact, we cannot have more partitions than attributes, so
the number of partitions is upper bounded by k = |A|, and
thus 0 ≤ p < k. However, some of these partitions can be
empty in the optimal solution, which means that the number
of partitions found by the ILP solution is typically lower
than the maximum possible. A simple post-processing step
removes empty partitions and creates the final partitioning to
be used.

Finally, we define a helper notation for representing
whether a variable is accessed by a query or not: q(a) ≡
1(a ∈ q.A).

Weare now ready to state the ILP formulation.We separate
the cases of nonoverlapping and overlapping partitioning, as
the former case can be formulated using a smaller number of
constraints.

123

158 R. Soulé, B. Gedik

4.1 Nonoverlapping partitions

We start with the objective function, that is, the total query
I/O, which is to be minimized:

∑
q∈Q

w(q) ·
(k∑

p=1

(16 · ce(B) + 12 · cn(B)) · yp,q

+
∑
a∈A

s(a) · ce(B) · za,p,q

)
(7)

In Eq. 7, we simply sum for each query and each partition,
and add the I/O cost of reading in the structural information
found in a sub-block, if the partition is used by the query.
We then sum over each attribute as well and add the I/O
cost of reading in the attributes. Note that za,p,q could have
been replaced with xa,p · yp,q , but that would have made the
objective function nonlinear.

We are now ready to state our constraints. Our first con-
straint is that each attribute must be assigned to a single
partition. Formally:

∀a∈A,

k∑
p=1

xa,p = 1 (8)

Our second constraint is that if a query q contains an
attribute a assigned to a partition p, then partition p is used
by the query, i.e., yp,q = 1. In essence, we want to state:
∀{p,q}∈[1,...,k]×Q, yp,q = 1(

∑
a∈A q(a) · xa,p > 0).

In order to formulate this constraint, we use the following
ILP construction: Assume we have two variables, β1 and
β2, where β2 ∈ [0, 1] and β1 ≥ 0. We want to implement
the following constraint: β2 = 1(β1 > 0). This could be
expressed as a linear constraint as follows, where K is a
large constant guaranteed to be larger than β1 for all practical
purposes:

β1 − β2 ≥ 0

K · β2 − β1 ≥ 0 (9)

We apply this construction to our second constraint, where
β1 = ∑

a∈A q(a) · xa,p and β2 = yp,q . This results in the
following linear constraints:

∀{p,q}∈[1,...,k]×Q,
∑
a∈A

q(a) · xa,p − yp,q ≥ 0

∀{p,q}∈[1,...,k]×Q,K · yp,q −
∑
a∈A

q(a) · xa,p ≥ 0 (10)

Our third constraint is that if an attribute a is assigned
to a partition p, and partition p is used by a query q, then
the corresponding z variable must be set to 1. That is, we

want: ∀{a,p,q}∈A×[1,...,k]×Q, za,p,q = 1(xa,p = yp,q = 1).
We express this as a linear constraint, as follows:

∀{a,p,q}∈A×[1,...,k]×Q, za,p,q − (xa,p + yp,q) ≥ −1 (11)

In Eq. 11, when both the x and y variables both 1, the z
variable is simply forced to be 1. Otherwise, the z variable
can be either 0 or 1, but since the z variables appear in the
objective function as positive terms, the solver will set them
to 0 to minimize the I/O cost (note that the z variables do not
appear in any other constraint).

Our fourth constraint is that if a partition is nonempty,
then its corresponding u variable must be set to 0. In other
words, we want ∀p∈[1,...,k], u p = 1(

∑
a∈A xa,p > 0). This

is expressed as linear constraints, as follows:

∀p∈[1,...,k],
∑
a∈A

xa,p − u p ≥ 0

∀p∈[1,...,k], K · u p −
∑
a∈A

xa,p ≥ 0 (12)

Equation 12 uses the same construction as the second con-
straint, where β1 = ∑

a∈A xa,p and β2 = u p.
Our fifth, and the last, constraint deals with the storage

overhead. We want to make sure that the storage overhead
does not go over α. Recall that for the nonoverlapping
attributes case, the storage overhead depends on the num-
ber of partitions used (Eq. 3). That means that the only ILP
variables it depends on are the us. In particular, the number
of partitions used is given by

∑k
p=1 u p. This results in the

following linear constraint:

k∑
p=1

u p ≤ 1 + α

1 − ce(B)·∑a∈A s(a)

s(B)

(13)

The final ILP formulation for the nonoverlapping parti-
tioning is given in Fig. 4. We have a total of |A|2 · |Q| + 2 ·
|A| · |Q| + 3 · |A| + 1 constraints and the objective function
contains |A| · |Q| · (1 + |A|) variables.

4.2 Overlapping partitions

We present an ILP formulation of the problem, as we did for
the case of nonoverlapping partitions in Sect. 4.1. We use
the same set of variables and the same objective function.
However, the formulation of the constraints differ.

Our first constraint is that each attribute must be assigned
to at least one partition. Formally:

∀a∈A,

k∑
p=1

xa,p ≥ 1 (14)

123

RailwayDB: adaptive storage of interaction graphs 159

Fig. 4 ILP formulation for the nonoverlapping optimal railway design

As our second constraint, we require that for each attribute
contained in a query, there needs to be a partition that is
used by that query and that contains the attribute in question.
Formally:

∀{a,q}∈A×Q,

k∑
p=1

za,p,q ≥ q(a) (15)

As our third constraint, we require that if a query is using
an attribute from a partition, then that partition must contain
the attribute. That is, we need to link the z variables with
the x variables as ∀{a,p,q}∈A×[1,...,k]×Q, (za,p,q = 1) �⇒
(xa,p = 1). This can be stated as linear constraints:

∀{a,p,q}∈A×[1,...,k]×Q, xa,p − za,p,q ≥ 0 (16)

As our fourth constraint, we require that if a query is using
at least one attribute from a partition, then that partition must
be used by the query, i.e., we need to link the z variables with
the y variables as ∀{p,q}∈[1,...,k]×Q, yp,q = 1(

∑
a∈A za,p,q >

0). As before, we use the ILP construction fromEq. 9 for this,
where β2 = yp,q and β1 = ∑

a∈A za,p,q . We get:

∀{p,q}∈[1,...,k]×Q,
∑
a∈A

za,p,q − yp,q ≥ 0

∀{p,q}∈[1,...,k]×Q, K · yp,q −
∑
a∈A

za,p,q ≥ 0 (17)

Our fifth constraint is that if an attribute a is assigned to
a partition p, and partition p is used by a query q, then the

corresponding za,p,q variable must be set to 1. This is same
as the formulation for the nonoverlapping case from Eq. 11.

Our sixth constraint is that if a partition is nonempty, then
its corresponding u variable must be set to 0. Again, this is
same as the formulation for the nonoverlapping case from
Eq. 12.

Our seventh, and the last, constraint deals with the storage
overhead. However, the storage overhead formulation for the
overlapping case is different from the one for the nonover-
lapping case. This is because the overhead does not merely
depend on the number of partitions, as attributes might have
to be read multiple times from different partitions (due to the
overlaps). As a result, we express the overhead using base
variables as in the objective function. Formally:

k∑
p=1

(
(16 · ce(B) + 12 · cn(B)) · u p

+
∑
a∈A

s(a) · ce(B) · xa,p

)
≤ s(B) · (1 + α) (18)

The final ILP formulation for the overlapping partitioning
is given in Fig. 5. We have a total of 2 · |A|2 · |Q| + 3 ·

Fig. 5 ILP formulation for the overlapping partitioning

123

160 R. Soulé, B. Gedik

|A| · |Q| + 3 · |A| + 1 constraints and the objective function
contains |A| · |Q| · (1 + |A|) variables.

5 Heuristic solution

The ILP formulation described in Sect. 4 finds an opti-
mal solution to the problem of partitioning disk blocks into
sub-blocks such that the query I/O is minimized. Unfortu-
nately, solving these types of constraint problems at scale
can become a performance bottleneck, since integer pro-
gramming is NP-Hard. In a graph database using the railway
layout, the layout optimization of a block should be fast
enough so that it could be piggybacked on disk I/O when
significant workload change that necessitates a new layout
is detected. We therefore introduce heuristic algorithms for
both overlapping and nonoverlapping partitioning scenar-
ios. Experiments in Sect. 8 demonstrate that these heuristic
algorithms show significantly improved running times over
the optimal approaches, while still appreciably reducing the
query I/O cost.

5.1 Nonoverlapping attributes

For the nonoverlapping attributes scenario, we use a heuristic
algorithm that greedily assigns attributes to partitions. The
pseudo-code of it is given in Algorithm 2. One complication
is that the number of partitions is not known a priori. Yet,
we know that the number of partitions is bounded by the
number of attributes. Furthermore, the number of partitions
cannot be larger than one plus the number of attributes used
by the queries, as in the worst case each attribute will be in
a partition of its own and the unused attributes will be in a
separate partition. As such, we start with a single partition
and try increasing the number of partitions, until we hit the
maximum number of partitions or the storage overhead goes
beyond the threshold α. Among all partition counts tried,
the one that provides the lowest query cost is selected as the
final partitioning. Note that, for the nonoverlapping scenario,
the storage overhead is an increasing function of the number
of partitions. As such, once we exceed the storage overhead
threshold, we can safely stop trying larger numbers of parti-
tions.

For a fixed number of partitions, the algorithm operates
by incrementally assigning attributes to partitions. We con-
sider the attributes in decreasing order of their frequency.
This is because the reverse, that is, assigning highly frequent
attributes later, may result in making assignments that are
hard to balance out later. Initially, all partitions are empty.
We pick the next unassigned attribute and evaluate assign-
ing it to one of the available partitions. The assignment that
results in the lowest query cost is selected as the best assign-

Algorithm 2:Algorithm for partitioning blocks into sub-
blocks with nonoverlapping attributes.

Data: B: block, Q: set of queries
c∗ ← ∞ � Lowest cost over all # of partitions
l ← min(|A|, 1 + | ∪q∈Q q.A|)
for k = 1 to l do � For each possible # of partitions

R[i] ← ∅,∀i ∈ [1, . . . , k] � Initialize partitions
for a ∈ A, in decr. order of f (a) do � For each attribute

c ← ∞ � Lowest cost over all assignments
j ← −1 � Best partition assignment
for i ∈ [1, . . . , k] do � For each partition assignment

R[i] ← R[i] ∪ {a} � Assign attribute
if L(R, B, Q) < c then � If query cost is lower

c ← L(R, B, Q) � Update the lowest cost
j ← i � Update the best partition

R[i] ← R[i] \ {a} � Un-assign attribute
R[j] ← R[j] ∪ {a} � Assign to best partition

if H(R, B, Q) > α then break � If solution infeasible
if L(R, B, Q) < c∗ then � If solution has lower cost

c∗ ← L(R, B, Q) � Update the lowest cost
P(B) ← R � Update the best partitioning

return P(B) � Final set of sub-blocks

ment and is applied.When computing the query cost, we only
consider the attributes assigned so far.

5.1.1 Computational complexity

The computational complexity of the algorithm isO(k2 · |A| ·
|Q|), where k is themaximumnumber of partitions tried. The
|Q| term is the number of unique queries and comes from
the cost of computing the query I/O (this can be computed
incrementally, even though this is not shown in the pseudo-
code). While in the worst case we have k = |A|, resulting
in a computational complexity of O(|A|3 · |Q|), in practice
k is much lower due to the upper bound α on the storage
overhead.

5.2 Overlapping Partitions

For the overlapping attributes scenario, we use a heuristic
algorithm that starts with each query in its own partition and
greedilymerges partitions until the storage overhead is below
the limit. The pseudo-code of it is given in Algorithm 3.

We start the algorithm in a state where for each unique
query there is a separate sub-block that contains the attributes
from that query. If there are attributes not covered by the
queries, they are assigned to a special sub-block. This is the
“ideal” partitioning, because the I/O cost would be mini-
mized for the workload at hand. However, in most practical
settings, this partitioning will have excessive storage over-
head. Thus, we iteratively combine the pair of partitions that
have the lowest cost. This is repeated until the storage over-
head is below the threshold α. The end result is the final
overlapping partitioning.

We define the cost of a merge based on the query I/O
and storage cost. In particular, we measure the increase in
the query I/O due to the merge, per reduction in the storage

123

RailwayDB: adaptive storage of interaction graphs 161

Algorithm 3:Algorithm for partitioning blocks into sub-
blocks with overlapping attributes.

Data: B: block, Q: set of queries
P(B) ← {q.A : q ∈ Q} � Each query gets its own sub-block
A′ ← A \ ⋃

q∈Q q.A � Attributes not covered by the queries

if A′ 	= ∅ then � There are uncovered attributes
P(B) ← P(B) ∪ {A′} � Add missing attributes

while H(P, B) > α do � Until storage overhead is below α

c∗ ← ∞ � Lowest cost over all sub-block pairs
(bx , by) ← (∅,∅) � Sub-block pair with the lowest cost
for {bi , b j } ∈ P(B) do � For each pair of blocks

P ′(B) ← P(B) \ {bi , b j } ∪ {bi ∪ b j }
c ← L(P ′,B,Q)−L(P,B,Q)

H(P,B)−H(P ′,B)
� Cost of merge

if c < c∗ then � Cost is lower
c∗ ← c � Update the lowest cost
(bx , by) ← (bi , b j) � Update the best pair

P(B) ← P(B) \ {bx , by } ∪ {bx ∪ by }
return P(B) � Final set of sub-blocks

space used.We want to minimize this metric. More formally,
assumingP is the partitioning before the merge andP ′ is the
partitioning after the merge, the utility can be formulated as:

L(P ′, B, Q) − L(P, B, Q)

H(P, B) − H(P ′, B)

5.2.1 Computational complexity

The computational complexity of the algorithm is O(|A| ·
|Q|3). At each iteration, the algorithm reduces the number
of partitions by one and initially there are |Q| partitions.
As such, in the worst case, there will be |Q| iterations. The
number of pairs considered is bounded by |Q|2. The utility
metric can be computed incrementally, but requires iterating
over the query attributes, bringing in the |A| term.

6 Database system design

We have implemented an interaction graph database, named
RailwayDB, which encompasses the adaptation capabilities
outlined in the earlier sections.

Figure 6 presents the system architecture of RailwayDB.
The design extends our earlierwork [3],withmajor newcom-
ponents for handling adaptation, which is the main focus of
this work. These new components include theOptimizer, Stat
Collector, Re-partitioner, and the Partition Manager. Here,
we give a brief overview of the RailwayDB components and
their interactions, with a particular focus on the components
that are used for adapting the storage layout.

The RailwayDB system has three entry points. The first
entry point is via streaming inserts. As new interactions hap-
pen, they are added into the systemvia streaming inserts. This
is shown on the top left side of Fig. 6. The second entry point
is the queries. Interval queries can be asked to locate vertices
that are involved in interactions within a given time interval
and focused interval queries can be asked to locate all the

Interval
Query
Index

Focused
Interval

Query Index

Stat Collector

Query
Processor

Op mizer

In-memory
Graph

Block
Creator

Block
Manager

Par on
Manager Re-par oner

streaming inserts

queries

adapta on

Fig. 6 Architecture of RailwayDB. Solid lines represent ‘writes to’
relationships, whereas dashed lines represent ‘reads from’ relationships

interactions of a given vertex within a given time interval.
Finally, adaptation can be triggered by asking the optimizer
to re-partition the disk layout.

6.1 Streaming inserts

Incoming interactions are first bufferedwithin the In-memory
Graph component. These edges are also inserted into a FIFO
queue. The FIFO queue has a limited temporal extent, and as
the interactions expire from the queue, they are removed from
the in-memory graph and sent to the Block Creator compo-
nent. This component forms blocks of temporal neighbor lists
in batches, with the aim of maximizing locality. The details
of this process are given in [3]. The Block Creator uses the
information it gets from the Partition Manager to decide on
the partitions it will use for creating sub-blocks. The Parti-
tion Manager manages the partition index, which provides
the partitioning of edge attributes for a given timestamp. This
index is queried using the mid-point of the temporal range
of a block as the timestamp, in order to locate the parti-
tioning to be used for creating the sub-blocks. The partition
index uses an LRU cache to keep the commonly used map-
pings in memory. Once the sub-blocks are formed, they are
forwarded to the Block Manager, which writes them to the
disk. The Block Manager also uses an LRU buffer to keep
commonly used blocks in memory. The Block Creator also
updates the Focused Query Interval Index and the Interval
Query Indexwith information about the newly created block.
We will detail the use of these indexes shortly.

6.2 Queries

Interval queries are supported by the Interval Query Index,
which indexes the temporal neighbor list time ranges of the

123

162 R. Soulé, B. Gedik

head vertices within each block. Given a time range, this
index can locate all head vertices (with their block ids) that
are involved in interactions with timestamps in the given
time range. The focused interval queries are supported by
the Focused Interval Query Index, which indexes the pairs of
head vertex and temporal neighbor list end timestampswithin
each block. Given a time range and a vertex, this index can
locate all the block ids that contain interactions involving
the given vertex with timestamps in the given time range.
These two indexes are agnostic to the partitioning of blocks
into sub-blocks and always work with a special sub-block
called the master block. The master block contains all the
ids for the sub-blocks corresponding to the partitions. This
enables the Block Manager to locate all the sub-blocks given
the master. TheQuery Processor uses the Partition Manager
to decide which sub-blocks to retrieve from the Block Man-
ager. Depending on the partitions that are needed to answer
the query, the list of sub-blocks to be retrieved can change.
And this list could be different for different time pointswithin
the query time range.

The Query Processor also updates the Stat Collector as it
processes the queries. The Stat Collector maintains statistics
about which set of attributes are queried how many times.
These statistics are maintained separately for different time
ranges. In our implementation, we use fixed-size, nonover-
lapping time ranges for the purpose of statistics collection.

6.3 Layout Adaptation

The Optimizer component uses the statistics kept by the
Stat Collector to decide on the new partitionings for dif-
ferent time intervals. Various exact solutions and heuristics
we described in Sects. 4 and 5 are run as part of the Opti-
mizer. The results are fed into the Re-partitioner, which is
responsible for orchestrating the changes on the disk blocks.
For a given set of partitions associated with a time inter-
val, the Re-partitioner uses the interval query index to find
the list of blocks that are impacted by the change. For each
block, it loads the master block and uses the sub-block ids
contained there to selectively retrieve and update the sub-
blocks. Depending on the changes between the old and the
new partitioning, one or more sub-blocks may be added or
removed. The retrieval and storage of blocks are performed
by interacting with the Block Manager. The Optimizer then
updates the mapping stored in the partition index by calling
the Partition Manager.

7 System implementation

We have implemented a prototype of the RailwayDB, fol-
lowing the design described in the previous section. The
prototype is implemented in C++11 using the LLVM 3.5

compiler. It uses an LSM-tree (LevelDB [11]) for storing the
vertex and edge data, as well as the focused interval query
index and the partition index.AnR-tree (libspatialindex [12])
is used for storing the interval query index.

To solve the ILP formulation of the partitioning problem,
the optimizer relies on the C libraries from an integer linear
program solver (Gurobi [13]).

In addition to the database, we have implemented inf-
rastructure for evaluating the system, including a workload
simulator, which allows us to vary a number of parameters
that impact performance, and experiments that use real-world
workload from Twitter.

All source codes for the database, simulator, and experi-
ments are publicly available2.

8 Evaluation

In this section, we describe two sets of experiments that eval-
uate our adaptive storage scheme. The first set of experiments
is based on the analytic cost model described in Sect. 3
and uses a workload simulator that allows us to evaluate
the performance under a number of different workload para-
meters. The second set of experiments measures the system
performance of our database implementation using a real-
world data set drawn from Twitter messages. Overall, the
results demonstrate that the railway layout scheme signifi-
cantly reduces query I/O for interaction graphs.

8.1 Environment

We ran all experiments on a machine with a 2.3 GHz Intel i7
processor that has 32 KB L1 data, 32 KB L1 instruction, 256
KB L2 (per core), 6 MB L3 (shared) cache, and 16 GB of
main memory. The processor has four cores, but our imple-
mentation only uses a single core. The operating system was
OS X 10.9.4.

8.2 Model-based experiments

Our first set of experiments evaluates the partitioning algo-
rithms in isolation using the cost model from Sect. 3 and
a workload simulator. The simulator allows us to measure
the impact of different workload parameters on three perfor-
mance metrics: (i) the reduction in query I/O due to using
the railway layout, (ii) the expected increase in storage cost
resulting from the railway layout, and (iii) the scalability of
the partitioning algorithms.

2 https://github.com/usi-systems/railwaydb.git

123

https://github.com/usi-systems/railwaydb.git

RailwayDB: adaptive storage of interaction graphs 163

Table 1 Workload generation parameter defaults

Parameter Default

of attributes 10

attribute sizes Zipf (z = 0.5, {4, 1, 8, 2, 16, 32, 64})
query length Normal (μ = 3, σ = 2.0)

of query kinds 5

query kind freq. Zipf (z = 0.5, n = 5)

storage ohd. threshold α = 1.0

8.2.1 Workload simulator

The parameters and default settings of the workload simu-
lator are shown in Table 1. The default number of attributes
in the graph database schema is taken as 10, even though
we experiment with a range of values for it. The size of the
attributes come from the list of sizes given in Table 1 and
are picked randomly from a Zipf distribution with z = 0.5.
The average number of unique query kinds we have in the
workload for a particular time point is taken as 5, which is
another parameter we vary throughout our experiments. The
frequencies of different queries follow a Zipf distribution
with z = 0.5.

8.2.2 Experiment Setup

We measured these three respective values, query I/O cost,
storage overhead, and running time, for each partitioning
algorithm, as we varied three parameters to the default work-
load in Table 1:

– Number of attributes is the total number of attributes in
the iterationgraph schema.Wefirst increased the attribute
count by multiples of two from 2 to 16. Then, to measure
large attribute sets, we increased the attribute count by
powers of two from 16 to 128.

– Number of query kinds is the number of unique queries
in the workload. Queries are of a different kind if the
difference of their attribute sets is nonnull. Queries that
ask for the same set of attributes, but differ in start node or
time interval, are considered to be the same query kind.
We increased the number of query kinds by multiples of
two from 2 to 16. Beyond 16, the optimal solvers were
no longer able to find solutions in a reasonable amount
of time.

– Storage overhead threshold is the user-specified para-
meter that dictates how much storage overhead will be
tolerated for a solution. We increased the storage over-
head threshold by increments of 0.25 from 0 to 2.0.

As baseline comparisons, we also measured the results
for two naïve partitioning schemes: SinglePartition places
all attributes into a single partition, and PartitionPerAttribute
creates a separate partition for each attribute. The SinglePar-
tition scheme represents the standard disk layout [3], and
the PartitionPerAttribute approach represents an extreme
partitioning (although not an optimal one, as it potentially
increases both the query I/O and storage costs). Furthermore,
with the SinglePartition approach, the storage overhead is
minimized, and thus no other approach can have smaller
storage overhead. With the PartitionPerAttribute approach,
the query I/O is optimized for single-attribute queries, and
thus no other approach can have a lower I/O when only
one attribute is queried. These two approaches also corre-
spond to the classic record-oriented (SinglePartition) and
column-oriented (PartitionPerAttribute) storage in relational
databases.

For each configuration, we ran the experiment 10 times.
Each partitioning algorithm used the sameworkload for each
run, but each run was on a different random workload using
the same configuration parameters. We report the average
(arithmetic mean) and standard deviation.

For all experiments, other than the experiment in which
we explicitly altered the value, we used a default storage
overhead threshold value of 1.0. We believe this is a reason-
able number, as it corresponds with doubling the available
storage space. Note that this number is an upper bound on
the storage overhead. An optimal partitioning need not use
all of the extra space.

8.2.3 Query I/O

Figure 7 shows the results from the query I/O cost mea-
surements. In all three experiments, we see the benefit of the
railway layout. The SinglePartition and PartitionPerAttribute
layouts represent baselinemeasurements for a traditional lay-
out and pathological partitioning scheme. All versions of the
railway layout result in better query I/O than the baseline
measurements, except when the storage threshold is set to
not allow any overhead (as we would expect).

In the left graph, we see that the benefits of the railway
layout become more pronounced as we increase the number
of attributes. At the low end of the graph, with a schema
of only two attributes, the optimal overlapping partitioning
algorithm results in a 10% reduction in query I/O cost over
the SinglePartition scheme.With 16 attributes, there is a 77%
reduction in I/O cost. Note that the heuristic overlapping is
just as good, also giving a 77% reduction in I/O cost. For
large attribute sets, the results are even stronger. With 128
attributes, the heuristic and optimal schemes exhibit a 96%
reduction in I/O cost.

In the middle figure, we see that the benefits of the railway
layout remain relatively constant as we increase the number

123

164 R. Soulé, B. Gedik

Fig. 7 Query I/O cost for different partitioning algorithms for increasing number of attributes, number of query kinds, and for increasing storage
overhead threshold

Fig. 8 Storage overhead for different partitioning algorithms for increasing number of attributes, number of query kinds, and for increasing storage
overhead threshold

of query kinds. In the case of two query kinds, we see a
60% difference between the optimal overlapping and single
partitioning schemes, while in the case of 16 query kinds, we
see a 56% difference. While increasing the number of query
kinds did not have a big impact on query I/O, it did have a
large impact on running time, as we will see.

The railway layout makes a tradeoff between query I/O
cost and storage cost. We see in the right graph of Fig. 7 that
when the user explicitly disallows any increase in storage
(i.e., sets the threshold to 0), then the railway layout does
not help. However, with even just a slight 25% increase in
storage, all railway layouts reduce query I/O, demonstrating
reductions of 45%.

8.2.4 Storage overhead

The experiments in Fig. 8 quantify the storage overhead that
one can expectwith using the railway layout. In the left graph,
we see that the optimal overlapping and heuristic overlap-
ping approach the user-specified limit of doubling the storage
space. As expected, the algorithms will make use of extra
storage in order to reduce the query I/O cost. The nonoverlap-
ping schemes are limited in the amount or storage overhead
that they use, since they cannot duplicate attributes in sepa-
rate partitions. So, the extra storage overhead is attributed to
duplicating the graph structure.

The middle graph shows a similar result. The overlapping
partitioning algorithms approach the user-specified thresh-
old, while the nonoverlapping schemes are bounded.

The right graph in Fig. 8 is interesting. It shows that as the
user increases the threshold to a value of 2.0 (i.e., tripling the
available storage) both the optimal and heuristic overlapping
schemeswill try to take advantage of the extra space to reduce
query I/O.

8.2.5 Scalability

The experiments in Fig. 9 show the running times for our
four algorithms. For attribute sets smaller than 16 attributes,
the running times for all schemes are comparable. However,
for larger attribute sets, the heuristic approaches demon-
strate significantly faster running times. With 32 attributes,
the HeuristicNonOverlapping is 94% faster than the Opti-
malNonOverlapping scheme. When the schema had 128
attributes, the OptimalOverlapping approach took 18.95 s to
find a solution. In contrast, both heuristic solutions took mil-
liseconds to solve.

The number of query kinds had a large impact on solv-
ing time.With 16 attributes, theOptimalOverlapping scheme
took 17.22min to find a solution. The OptimalNonOverlap-
ping took 4.99 s. However, the heuristic greedy algorithms
were still quite fast. The HeuristicOverlapping took just

123

RailwayDB: adaptive storage of interaction graphs 165

Fig. 9 Running time of different partitioning algorithms for increasing number of attributes, number of query kinds, and for increasing storage
overhead threshold

79ms and the HeuristicNonOverlapping took 30ms. After
leaving the experiment running for more than 12h, we were
not able to complete the optimal overlapping measurement
for the case of 32 query kinds. This experiment demonstrates
the benefit of our heuristic greedy algorithms.

However, as shown in the right graph, the storage overhead
threshold did not have a significant impact on the running
time. This is as expected, since the optimal solvers scale
with the number of variables in the constraint problem, and
the number of variables does not increase as we alter the
storage overhead threshold.

8.2.6 Summary

Overall, our experiments demonstrate the benefits of the rail-
way layout. For a storage increase of just 25%, the optimal
partitioning algorithm reduces the query I/O cost by 45%.
When allowed to double the storage usage, the overlapping
partitioning algorithm can reduce the I/O cost by 73%. The
heuristic algorithm performs almost as well, reducing the I/O
cost by 72%, while also reducing the running time needed
to find a solution by orders of magnitude.

8.3 System-based experiments

Our second set of experiments evaluates the impact of disk
adaptation using the RailwayDB prototype described in
Sect. 7 and a real-world data set. Specifically, we measured
the actual query I/O and query processing time of the Rail-
wayDBunder three different scenarios: (i) varying disk block
sizes, (ii) a varying number of query kinds, and (iii) varying
the traversal size of the queries.

8.3.1 Twitter data set

We populated our interaction graph with data drawn from
Twitter messages from the time interval May 14 to June 05,
2013. The data set contains messages from 500K most pro-
lificTwitter users fromTurkey. Interestingly, the time interval

Table 2 Average sizes of attribute data from the Twitter data set

Attribute Avg. size
(bytes)

Attribute Avg. size
(bytes)

Time 12 isTruncated 9

TweetId 22 mentionedUsers 12.9

UserId 12.9 hashTags 6.1

RetweetId 9.9 text 93.9

ReplyToStatus 5 dir 5

during which the data are collected coincides with the 2013
protests in Turkey [14] that generatedmassive amount of dis-
cussion and interaction in the social media. We convert the
twitter data into an interaction graph, as follows: If a tweet
from user x mentions another user y, then an interaction
between x and y is established.

Each tweet has 10 different attributes, which may be of
variable size. The names of the attributes and the average
(mean) size of each value appear in Table 2.

8.3.2 Queries

Toprovide aworkload,we generated 100 randomized queries
on the Twitter data set. Each query includes the following
information: (i) a start vertex, v, in the interaction graph, (ii)
a start time for the time interval of the query, (iii) an end time
for the same, and (iv) a set of attributes to retrieve from the
data on the outgoing edges of v.

For each query in the workload, we chose a random vertex
using a uniform probability distribution from the entire set of
vertices to act as the start vertex. To perform our experiments,
we limited the query time ranges to a day’s worth of inter-
actions. This has enabled us to run many queries and report
averages as well as standard deviations. The query length (#
of attributes used) was a randomly chosen value in the range
of [1,10] using a normal distribution, with a mean of three
attributes and a standard deviation of 2. The attributes were

123

166 R. Soulé, B. Gedik

(a) (b) (c)

Fig. 10 Experiments on real Twitter data show the benefits in terms of IO cost for the RailwayDB adaptive storage system. a Read IO count versus
block size, b Read IO count versus number of query templates, c Read IO count versus time delta for DFS graph traversal

(a) (b) (c)

Fig. 11 RailwayDB adaptive storage system demonstrates significant benefits in terms of query processing time for the Twitter data set, a Running
time versus block size, b Running time versus number of query templates, c Running time versus time delta for DFS graph traversal

chosen randomly using a Zipf distribution, with a parameter
of 0.5, from the set of attributes in Table 2.

8.3.3 Experiment Setup

We measured the query I/O cost and query processing time
using three partitioning algorithms, SinglePartition, Opti-
malNonOverlapping, and HeuristicNonOverlapping, as we
varied three parameters:

– Block size is the size of each disk block. We increased
the block size by multiples of two, from 1KB to 32KB.
For all other experiments, the default block size used was
32KB.

– Number of query kinds is the number of unique query
types in the workload. Two queries that ask for the same
set of attributes, but possibly differ in start node or time
interval, are considered to be the same query kind. We
increased the number of query kinds from 1 to 10. For all
other experiments, the number of query kinds was 3.

– Traversal size of queries represents the time ranges of the
queries.We increased the time range as a percentage from
10 to 100, the latter representing an entire day’s worth of

interactions. For all other experiments, the default time
range was 100%.

For each configuration, we ran the experiment 100 times
for each partitioning scheme. For each run, we generated
a different set of random queries with the same configura-
tion parameters.We report the average (arithmeticmean) and
standard deviation. The results of the experiments appear in
Figs. 10 and 11.

8.3.4 Block size

Figures 10a and 11a show the query I/O cost and query
processing time measurements for the block size experi-
ments. When the block size is small, the total amount of
I/O that the database must perform is smaller, and the time
to process the queries is also smaller. Thus, the impact of the
railway partitioning algorithms is harder to visualize in the
graph.

However, there is still a significant difference in the query
I/O cost measurements, even when the block size is 1,024
bytes. For example, the OptimalNonOverlapping scheme
reads 66,257,while theSinglePartition scheme reads 129,506

123

RailwayDB: adaptive storage of interaction graphs 167

bytes, corresponding to a 48% reduction in I/O. As the block
size increases, the affects are more pronounced. When the
block size is 65,536 bytes, the OptimalNonOverlapping and
HeuristicNonOverlapping both reduce I/O by 62%.

The query processing time results follow the same trend
as the query I/O cost measurements. When the block size is
1,024 bytes, the query processing time is reduced by 2%.
However, when the block size is 65,536 bytes, both the opti-
mal and heuristic approaches reduce the query processing
time by 44%.

8.3.5 Number of query kinds

Figures 10b and 11b show the results for the number of query
kinds experiment. Thenumber of querykinds does not impact
the SinglePartition scheme, since the database has to read all
attributes, regardless of the query workload.

For both query I/O and running time, there is very little
difference between the OptimalNonOverlapping andHeuris-
ticNonOverlapping schemes. Both demonstrate a significant
reduction in query I/O and query processing time, in compar-
ison with the SinglePartition scheme. When there is a single
query kind, both the optimal and heuristic schemes reduce
I/O by 53% and reduce running time by 45 and 44%, respec-
tively. When there are 10 query kinds, both schemes reduce
I/O by 33% and reduce running time by 16%.

The graphs show the expected behavior; increasing the
number of templates reduces the benefits of the partitioning
scheme. However, even with a relatively diverse number of
query kinds, the railway scheme significantly reduces I/O
and query processing time.

8.3.6 Traversal size of queries

To measure the impact of query traversal size, we modified
the workload described above to perform a depth-first search
(DFS) bounded by a time interval, rather than query a single
node. To increase the traversal size, we increased the time
interval for the query as a percentage of the total graph time
interval.

Figures 10c and 11c show the results for the traversal
size experiment. The benefits of the RailwayDB partition-
ing schemes remain relatively constant for all measurements,
and both the optimal and heuristic approaches demonstrate
reductions in read I/O and query processing time. When the
time delta is 10%, both schemes reduce I/O by 43%. When
the time delta is 100%, the OptimalNonOverlapping reduces
I/O by 39% and the HeuristicNonOverlapping reduces I/O
by 38%. Similarly, when the time delta is 10% the Opti-
malNonOverlapping reduces I/O by query processing time
by 33% and the HeuristicNonOverlapping reduces time by

30%. When the time delta is 100% the OptimalNonOver-
lapping reduces I/O by query processing time by 12% and
the HeuristicNonOverlapping reduces time by 10%.

8.3.7 Summary

All of the experiments demonstrate that the adaptive railway
layout significantly reduces the query I/O cost and query
processing time when compared to a standard disk layout
(i.e., SinglePartition). The effectiveness of the railway layout
improves if there are large disk blocks, a smaller number of
query kinds, and if queries require more I/O.

9 Related Work

There has recently been increased research interest in large-
scale graph analysis and programmingmodels. These include
synchronous vertex programming pioneered by Pregel [15],
such as Apache Giraph [16], asynchronous vertex pro-
gramming pioneered by GraphLab [17,18], and generalized
iterated matrix-vector multiplication pioneered by PEGA-
SUS [19]. These systems largely focus on the problem on
analytical processing, while our work focuses on data man-
agement. Moreover, the graphs these systems provide do not
have a temporal dimension.

The railway layout and algorithms build on our prior
work [3], which added a temporal dimension to the notion
of locality for organizing the disk layout of interaction graph
databases. Graph database nodes are placed in the same disk
block if they are close together both spatially and temporally.
The railway layout extends this design to partition disk blocks
into sub-blocks that reduces the query I/Ocost.Because inter-
action graphs are append-only, the railway design enables the
disk layout to adapt with changing workloads.

Our adaptation scheme is similar to work on adaptive lay-
outs for relational database. The H2O [4] system can adapt
its data layout into three types, row-major, column-major, or
groups of columns, depending on the workload. HYRISE [5]
provides a similar adaptive layout scheme for an in-memory
relational database.Both systems use heuristic, iterative solu-
tions to determine partitioning. The railway layout scheme
differs, in that it targets interaction graphs, and we present
optimal solutions, in addition to heuristic solutions.

A related area of work in relational databases is adaptive
indexing. The goal of adaptive indexing is to create and adjust
indexes in response to the queries processed by the system. In
this respect, like our work, adaptive indexing is query work-
load aware. Adaptive indexing approaches include database
cracking [20,21], adaptive merging [22,23], or a combi-
nation of the two [24]. In database cracking, indexes are
created over columns used by the query predicates, by form-

123

168 R. Soulé, B. Gedik

ing rangepartitioned columns and associated indexes over the
range boundaries. As new query predicates are seen for the
columns, new partitions are added, getting closer to a sorted
column. The idea behind adaptivemerging is to initially orga-
nize a column as a list of internally sorted partitions, and
as new queries arrive, incrementally merge parts of these
partitions satisfying query predicates into a single sorted par-
tition. A similar area is fine-grained indexing [25], where
indexes are formed only on the parts of the table that are
being used by the queries. Different than all these works,
RailwayDB partitions the set of attributes (aka columns)
and can independently adjust this partitioning for different
time ranges over the temporally ordered interactions in the
database.

The rise in popularity of social networks, and the recog-
nition that workloads for social network data differ from
traditional workloads, has lead to increased scrutiny on the
problem of disk layout for graph databases. Bondhu [1], the
layout manager for the Neo4j graph database [26], aims to
minimize the number of seek operations for small user block
sizes by fetching multiple friends’ data at the same time and
by clustering related data into the same block. Bondhu dif-
fers from our work in that the cost model does not include a
notion of time, nor does it allow for adaptive layouts.

Instead of storing graph data with an adjacency list repre-
sentation,GBase [27] uses a sparsematrix format. Thematrix
representation allows GBase to use compression schemes to
store homogenous regions of graphs, significantly reducing
the storage overhead for large graphs. On top of this stor-
age layout, GBase provides a parallel indexing mechanism
that accelerates queries. While the high-level motivations of
GBase (i.e., improving query response time for graph data-
base queries) are similar to our work, they are largely focused
on the storage overhead. In contrast, we focus on reducing
the query I/O cost.

DeltaGraph [28], like our work, includes a temporal com-
ponent to the layout design, to efficiently support queries
over historical graph data. DeltaGraph differs from our work
in that they are targeting distributed graph databases that
partition data across a set of machines. Consequently, they
propose a quite different cost model. Moreover, our railway
design lays the foundation for an adaptive disk layout mech-
anism, which can change over time. Since the DeltaGraph
mechanism is static, we expect that the two designs are com-
plementary.

Finally, there is prior work on temporal RDF databases,
which aims to improve the response timeofSPARQLqueries.
Notably, Bornea et al. [29] describe a way of mapping an
RDF store to a relational database, in order to leverage the
overwhelming amount of work on relational database query
optimization. Their work is similar to ours in that they use a
ILP formulation of a constraint problem in order to optimally
determine data placement.

10 Conclusion

Many of today’s most popular applications rely on data
analytics performed on interaction graphs. The ability to effi-
ciently support historical analysis over interaction graphs
requires effective solutions for the problem of data layout
on disk. In this paper, we have presented a novel disk lay-
out design for graphs called the railway layout. The design
is analogous to hybrid column and row stores in relational
databases. Our simulations and experiments show that the
railway layout significantly reduces query I/O cost for ran-
domized workloads.We have identified the key challenge for
systems to implement the railway layout,which is how to par-
tition blocks into sub-blocks. To solve that problem, we first
presented optimal solutions for overlapping and nonover-
lapping partitioning using an ILP formulation. To improve
the scalability of the partitioner, and enable future work
in online adaptation of the disk layout, we have also pre-
sented heuristic greedy algorithms that find results close to
the optimal solutions, but exhibit faster running timeson large
graph schemas andworkloads. To compare the four partition-
ing algorithms, we have presented a number of experiments
that evaluate the effectiveness and tradeoffs of the various
approaches. Overall, the railway layout design appreciably
improves the performance of data analytics on interaction
graphs.

References

1. Hoque, I., Gupta, I.: Disk layout techniques for online social net-
work data. Internet Comput. 16(3), 24–36 (2012)

2. Steinhaus, R.: G-Store: a storage manager for graph data. Master’s
thesis, University of Oxford (2011)

3. Gedik, B., Bordawekar, R.: Disk-based management of interaction
graphs. IEEE Trans. Knowl. Data. Eng. (TKDE) 26(11), 650–665
(2014)

4. Alagiannis, I., Idreos, S., Ailamaki, A.: H2O: a hands-free adaptive
store. In: ACM International Conference on Management of Data
(SIGMOD), pp. 1103–1114 (2014)

5. Grund,M., Zeier, A., Krüger, J., Plattner, H.,Madden, S.: HYRISE:
a main memory hybrid storage engine. VLDB J. (VLDBJ) 4(2),
105–116 (2010)

6. Stonebraker, M., Abadi, D.J., Batkin, A., Chen, X., Cherniack, M.,
Ferreira, M., Lau, E., Lin, A., Madden, S., O’Neil, E., O’Neil, P.,
Rasin, A., Tran, N., Zdonik, S.: C-store: a column-oriented DBMS.
In: International Conference on Very Large Data Bases (VLDB),
pp. 553–564 (2005)

7. Hellerstein, J.M., Stonebraker, M., Hamilton, J.: Architecture of a
database system. Found. Trends Databases 1(2), 141–259 (2007).
doi:10.1561/1900000002

8. Abadi, D., Boncz, P., Harizopoulos, S., Idreos, S., Madden, S.: The
design and implementation of modern column-oriented database
systems. Found. Trends Databases 5(3), 197–280 (2013)

9. Wilson, C., Boe, B., Sala, A., Puttaswamy, K.P., Zhao, B.Y.: User
interactions in social networks and their implications. In: Euro-
pean Conference on Computer Systems (EUROSYS), pp. 205–218
(2009)

123

http://dx.doi.org/10.1561/1900000002

RailwayDB: adaptive storage of interaction graphs 169

10. Wilson, C., Sala, A., Puttaswamy, K.P.N., Zhao, B.Y.: Beyond
social graphs: user interactions in online social networks and their
implications. ACM Trans. Web (TWEB) 6(4), 17:1–17:31 (2012)

11. Ghemawat, S.: LevelDB - a fast and lightweight key/value database
library by Google. Available at https://github.com/google/leveldb,
retrieved March, 2015

12. Hadjieleftheriou,M.,Hoel, E.G., Tsotras,V.J.: SaIL: a spatial index
library for efficient application integration. GeoInformatica 9(4),
367–389 (2005)

13. Gurobi Optimization Inc.: The Gurobi Optimizer. Available at
http://www.gurobi.com

14. Turkey Protests Spread from Istanbul to Ankara, Euronews. http://
www.euronews.com/2013/05/31/turkey-protests-spread-from-
istanbul-to-ankara/

15. Malewicz, G., Austern, M.H., Bik, A.J., Dehnert, J.C., Horn, I.,
Leiser, N., Czajkowski, G.: Pregel: a system for large-scale graph
processing. In: ACM International Conference on Management of
Data (SIGMOD), pp. 135–146 (2010)

16. Apache giraph. http://giraph.apache.org
17. Gonzalez, J.E., Low, Y., Gu, H., Bickson, D., Guestrin, C.: Power-

Graph: distributed graph-parallel computation on natural graphs.
In: USENIX Symposium onOperating Systems Design and Imple-
mentation (OSDI), pp. 17–30 (2012)

18. Kyrola, A., Blelloch, G., Guestrin, C.: GraphChi: large-scale graph
computation on just a PC. In: USENIX Symposium on Operating
Systems Design and Implementation (OSDI), pp. 31–46 (2012)

19. Kang, U., Tsourakakis, C.E., Faloutsos, C.: PEGASUS: A peta-
scale graph mining system implementation and observations. In:
IEEE International Conference on Data Mining (ICDM), pp. 229–
238 (2009)

20. Idreos, S., Kersten, M.L., Manegold, S.: Self-organizing tuple
reconstruction in column-stores. In: ACM International Confer-
ence on Management of Data (SIGMOD), pp. 297–308 (2009)

21. Idreos, S., Kersten, M.L., Manegold, S.: Database cracking. In:
Conference on Innovative Data Systems Research (CIDR), pp. 68–
78 (2007)

22. Graefe, G., Kuno, H.: Self-selecting, self-tuning, incrementally
optimized indexes. In: International Conference on Extending
Database Technology (EDBT), pp. 371–381 (2010)

23. Graefe, G., Kuno, H.A.: Adaptive indexing for relational keys. In:
Workshop on Self-Managing Database Systems (SMDB), pp. 69–
74 (2010)

24. Idreos, S., Manegold, S., Kuno, H., Graefe, G.: Merging what’s
cracked, cracking what’s merged: adaptive indexing in main-
memory column-stores. In: InternationalConference onVeryLarge
Data Bases (VLDB), pp. 586–597 (2014)

25. Wu, E., Madden, S.: Partitioning techniques for fine-grained
indexing. In: IEEE International Conference on Data Engineering
(ICDE), pp. 1127–1138 (2011)

26. Neo4j Graph Database. http://www.neo4j.org
27. Kang, U., Tong, H., Sun, J., Lin, C.Y., Faloutsos, C.: GBASE: A

scalable and general graph management system. In: ACM Inter-
national Conference on Knowledge Discovery and Data Mining
(SIGKDD), pp. 1091–1099 (2011)

28. Khurana, U., Deshpande, A.: Efficient snapshot retrieval over his-
torical graph data. In: IEEE International Conference on Data
Engineering (ICDE), pp. 997–1008 (2013)

29. Bornea,M.A.,Dolby, J., Kementsietsidis, A., Srinivas,K.,Dantres-
sangle, P., Udrea, O., Bhattacharjee, B.: Building an efficient rdf
store over a relational database. In: ACM International Conference
on Management of Data (SIGMOD), pp. 121–132 (2013)

123

https://github.com/google/leveldb
http://www.gurobi.com
http://www.euronews.com/2013/05/31/turkey-protests-spread-from-istanbul-to-ankara/
http://www.euronews.com/2013/05/31/turkey-protests-spread-from-istanbul-to-ankara/
http://www.euronews.com/2013/05/31/turkey-protests-spread-from-istanbul-to-ankara/
http://giraph.apache.org
http://www.neo4j.org

	RailwayDB: adaptive storage of interaction graphs
	Abstract
	1 Introduction
	2 Adaptive storage overview
	2.1 Interaction graphs
	2.2 Motivating example
	2.3 Storage for locality
	2.4 Railway layout
	2.5 Adaptation

	3 Disk block partitioning problem
	3.1 Basic notation
	3.2 Optimization problem
	3.3 Storage overhead formulation
	3.4 Query I/O formulation

	4 ILP solution
	4.1 Nonoverlapping partitions
	4.2 Overlapping partitions

	5 Heuristic solution
	5.1 Nonoverlapping attributes
	5.1.1 Computational complexity

	5.2 Overlapping Partitions
	5.2.1 Computational complexity

	6 Database system design
	6.1 Streaming inserts
	6.2 Queries
	6.3 Layout Adaptation

	7 System implementation
	8 Evaluation
	8.1 Environment
	8.2 Model-based experiments
	8.2.1 Workload simulator
	8.2.2 Experiment Setup
	8.2.3 Query I/O
	8.2.4 Storage overhead
	8.2.5 Scalability
	8.2.6 Summary

	8.3 System-based experiments
	8.3.1 Twitter data set
	8.3.2 Queries
	8.3.3 Experiment Setup
	8.3.4 Block size
	8.3.5 Number of query kinds
	8.3.6 Traversal size of queries
	8.3.7 Summary

	9 Related Work
	10 Conclusion
	References

