407 research outputs found

    Atomic Hydrogen Cleaning of Polarized GaAs Photocathodes

    Full text link
    Atomic hydrogen cleaning followed by heat cleaning at 450^\circC was used to prepare negative-electron-affinity GaAs photocathodes. When hydrogen ions were eliminated, quantum efficiencies of 15% were obtained for bulk GaAs cathodes, higher than the results obtained using conventional 600^\circC heat cleaning. The low-temperature cleaning technique was successfully applied to thin, strained GaAs cathodes used for producing highly polarized electrons. No depolarization was observed even when the optimum cleaning time of about 30 seconds was extended by a factor of 100

    Surface Analysis of OFE-Copper X-Band Accelerating Structures and Possible Correlation to RF Breakdown Events

    Full text link
    X-band accelerator structures meeting the Next Linear Collider (NLC) design requirements have been found to suffer vacuum surface damage caused by radio frequency (RF) breakdown, when processed to high electric-field gradients. Improved understanding of these breakdown events is desirable for the development of structure designs, fabrication procedures, and processing techniques that minimize structure damage. RF reflected wave analysis and acoustic sensor pickup have provided breakdowns localization in RF structures. Particle contaminations found following clean autopsy of four RF-processed travelling wave structures, have been catalogued and analyzed. Their influence on RF breakdown, as well as that of several other material-based properties, will be discussed.Comment: 21 pages, 8 figures, 4 tables, Submitted to JVST A as a proceeding of the 50th AVS conference (Baltimore, MD, 2-7 Nov 2003

    Beam Test of a Segmented Foil SEM Grid

    Full text link
    A prototype Secondary-electron Emission Monitor (SEM) was installed in the 8 GeV proton transport line for the MiniBooNE experiment at Fermilab. The SEM is a segmented grid made with 5 um Ti foils, intended for use in the 120 GeV NuMI beam at Fermilab. Similar to previous workers, we found that the full collection of the secondary electron signal requires a bias voltage to draw the ejected electrons cleanly off the foils, and this effect is more pronounced at larger beam intensity. The beam centroid and width resolutions of the SEM were measured at beam widths of 3, 7, and 8 mm, and compared to calculations. Extrapolating the data from this beam test, we expect a centroid and width resolutions of 20um and 25 um, respectively, in the NuMI beam which has 1 mm spot size.Comment: submitted to Nucl. Instr. Meth.

    Nuclear Magnetic Quadrupole Moments in Single Particle Approximation

    Full text link
    A static magnetic quadrupole moment of a nucleus, induced by T- and P-odd nucleon-nucleon interaction, is investigated in the single-particle approximation. Models are considered allowing for analytical solution. The problem is also treated numerically in a Woods-Saxon potential with spin-orbit interaction. The stability of results is discussed.Comment: LATEX, 9 pages, 1 postscript figure available upon request from "[email protected]". BINP 94-4

    Pion-Muon Asymmetry Revisited

    Full text link
    Long ago an unexpected and unexplainable phenomena was observed. The distribution of muons from positive pion decay at rest was anisotropic with an excess in the backward direction relative to the direction of the proton beam from which the pions were created. Although this effect was observed by several different groups with pions produced by different means, the result was not accepted by the physics community, because it is in direct conflict with a large set of other experiments indicating that the pion is a pseudoscalar particle. It is possible to satisfy both sets of experiments if helicity-zero vector particles exist and the pion is such a particle. Helicity-zero vector particles have direction but no net spin. For the neutral pion to be a vector particle requires an additional modification to conventional theory as discussed herein. An experiment is proposed which can prove that the asymmetry in the distribution of muons from pion decay is a genuine physical effect because the asymmetry can be modified in a controllable manner. A positive result will also prove that the pion is NOT a pseudoscalar particle.Comment: 9 pages, 3 figure

    Polarization instabilities in a two-photon laser

    Full text link
    We describe the operating characteristics of a new type of quantum oscillator that is based on a two-photon stimulated emission process. This two-photon laser consists of spin-polarized and laser-driven 39^{39}K atoms placed in a high-finesse transverse-mode-degenerate optical resonator, and produces a beam with a power of \sim 0.2 μ\mu W at a wavelength of 770 nm. We observe complex dynamical instabilities of the state of polarization of the two-photon laser, which are made possible by the atomic Zeeman degeneracy. We conjecture that the laser could emit polarization-entangled twin beams if this degeneracy is lifted.Comment: Accepted by Physical Review Letters. REVTeX 4 pages, 4 EPS figure

    Critical Review of Theoretical Models for Anomalous Effects (Cold Fusion) in Deuterated Metals

    Full text link
    We briefly summarize the reported anomalous effects in deuterated metals at ambient temperature, commonly known as "Cold Fusion" (CF), with an emphasis on important experiments as well as the theoretical basis for the opposition to interpreting them as cold fusion. Then we critically examine more than 25 theoretical models for CF, including unusual nuclear and exotic chemical hypotheses. We conclude that they do not explain the data.Comment: 51 pages, 4 Figure

    Future Directions in Parity Violation: From Quarks to the Cosmos

    Get PDF
    I discuss the prospects for future studies of parity-violating (PV) interactions at low energies and the insights they might provide about open questions in the Standard Model as well as physics that lies beyond it. I cover four types of parity-violating observables: PV electron scattering; PV hadronic interactions; PV correlations in weak decays; and searches for the permanent electric dipole moments of quantum systems.Comment: Talk given at PAVI 06 workshop on parity-violating interactions, Milos, Greece (May, 2006); 10 page

    Spin Structure of the Proton from Polarized Inclusive Deep-Inelastic Muon-Proton Scattering

    Get PDF
    We have measured the spin-dependent structure function g1pg_1^p in inclusive deep-inelastic scattering of polarized muons off polarized protons, in the kinematic range 0.003<x<0.70.003 < x < 0.7 and 1GeV2<Q2<60GeV21 GeV^2 < Q^2 < 60 GeV^2. A next-to-leading order QCD analysis is used to evolve the measured g1p(x,Q2)g_1^p(x,Q^2) to a fixed Q02Q^2_0. The first moment of g1pg_1^p at Q02=10GeV2Q^2_0 = 10 GeV^2 is Γp=0.136±0.013(stat.)±0.009(syst.)±0.005(evol.)\Gamma^p = 0.136\pm 0.013(stat.) \pm 0.009(syst.)\pm 0.005(evol.). This result is below the prediction of the Ellis-Jaffe sum rule by more than two standard deviations. The singlet axial charge a0a_0 is found to be 0.28±0.160.28 \pm 0.16. In the Adler-Bardeen factorization scheme, Δg2\Delta g \simeq 2 is required to bring ΔΣ\Delta \Sigma in agreement with the Quark-Parton Model. A combined analysis of all available proton and deuteron data confirms the Bjorken sum rule.Comment: 33 pages, 22 figures, uses ReVTex and smc.sty. submitted to Physical Review
    corecore