36 research outputs found

    Cross-neutralization of cutaneous and mucosal Papillomavirus types with anti-sera to the amino terminus of L2

    Get PDF
    AbstractVaccination with papillomavirus L2 has been shown to induce neutralizing antibodies that protect against homologous type infection and cross-neutralize a limited number of genital HPVs. Surprisingly, we found that antibodies to bovine papillomavirus (BPV1) L2 amino acids 1–88 induced similar titers of neutralizing antibodies against Human papillomavirus (HPV)16 and 18 and BPV1 pseudoviruses and also neutralized HPV11 native virions. These antibodies also neutralized each of the other pseudovirus types tested, HPV31, HPV6 and Cottontail rabbit papillomavirus (CRPV) pseudoviruses, albeit with lower titers. HPV16, HPV18, HPV31, HPV6 and CRPV L2 anti-sera also displayed some cross-neutralization, but the titers were lower and did not encompass all pseudoviruses tested. This study demonstrates the presence of broadly cross-neutralizing epitopes at the N-terminus of L2 that are shared by cutaneous and mucosal types and by types that infect divergent species. BPV1 L2 was exceptionally effective at inducing cross-neutralizing antibodies to these shared epitopes

    A Pan-HPV Vaccine Based on Bacteriophage PP7 VLPs Displaying Broadly Cross-Neutralizing Epitopes from the HPV Minor Capsid Protein, L2

    Get PDF
    Current human papillomavirus (HPV) vaccines that are based on virus-like particles (VLPs) of the major capsid protein L1 largely elicit HPV type-specific antibody responses. In contrast, immunization with the HPV minor capsid protein L2 elicits antibodies that are broadly cross-neutralizing, suggesting that a vaccine targeting L2 could provide more comprehensive protection against infection by diverse HPV types. However, L2-based immunogens typically elicit much lower neutralizing antibody titers than L1 VLPs. We previously showed that a conserved broadly neutralizing epitope near the N-terminus of L2 is highly immunogenic when displayed on the surface of VLPs derived from the bacteriophage PP7. Here, we report the development of a panel of PP7 VLP-based vaccines targeting L2 that protect mice from infection with carcinogenic and non-carcinogenic HPV types that infect the genital tract and skin.L2 peptides from eight different HPV types were displayed on the surface of PP7 bacteriophage VLPs. These recombinant L2 VLPs, both individually and in combination, elicited high-titer anti-L2 IgG serum antibodies. Immunized mice were protected from high dose infection with HPV pseudovirus (PsV) encapsidating a luciferase reporter. Mice immunized with 16L2 PP7 VLPs or 18L2 PP7 VLPs were nearly completely protected from both PsV16 and PsV18 challenge. Mice immunized with the mixture of eight L2 VLPs were strongly protected from genital challenge with PsVs representing eight diverse HPV types and cutaneous challenge with HPV5 PsV.VLP-display of a cross-neutralizing HPV L2 epitope is an effective approach for inducing high-titer protective neutralizing antibodies and is capable of offering protection from a spectrum of HPVs associated with cervical cancer as well as genital and cutaneous warts

    HPV vaccine: an overview of immune response, clinical protection, and new approaches for the future

    Get PDF
    Although long-term protection is a key-point in evaluating HPV-vaccine over time, there is currently inadequate information on the duration of HPV vaccine-induced immunity and on the mechanisms related to the activation of immune-memory. Longer-term surveillance in a vaccinated population is needed to identify waning immunity, evaluating any requirements for booster immunizations to assess vaccine efficacy against HPV-diseases. Current prophylactic vaccines have the primary end-points to protect against HPV-16 and 18, the genotypes more associated to cervical cancer worldwide. Nevertheless, data from many countries demonstrate the presence, at significant levels, of HPVs that are not included in the currently available vaccine preparations, indicating that these vaccines could be less effective in a particular area of the world. The development of vaccines covering a larger number of HPVs presents the most complex challenge for the future. Therefore, long term immunization and cross-protection of HPV vaccines will be discussed in light of new approaches for the future

    Target Cell Cyclophilins Facilitate Human Papillomavirus Type 16 Infection

    Get PDF
    Following attachment to primary receptor heparan sulfate proteoglycans (HSPG), human papillomavirus type 16 (HPV16) particles undergo conformational changes affecting the major and minor capsid proteins, L1 and L2, respectively. This results in exposure of the L2 N-terminus, transfer to uptake receptors, and infectious internalization. Here, we report that target cell cyclophilins, peptidyl-prolyl cis/trans isomerases, are required for efficient HPV16 infection. Cell surface cyclophilin B (CyPB) facilitates conformational changes in capsid proteins, resulting in exposure of the L2 N-terminus. Inhibition of CyPB blocked HPV16 infection by inducing noninfectious internalization. Mutation of a putative CyP binding site present in HPV16 L2 yielded exposed L2 N-terminus in the absence of active CyP and bypassed the need for cell surface CyPB. However, this mutant was still sensitive to CyP inhibition and required CyP for completion of infection, probably after internalization. Taken together, these data suggest that CyP is required during two distinct steps of HPV16 infection. Identification of cell surface CyPB will facilitate the study of the complex events preceding internalization and adds a putative drug target for prevention of HPV–induced diseases

    Clinical and epidemiological correlates of antibody response to human papillomaviruses (HPVs) as measured by a novel ELISA based on denatured recombinant HPV16 late (L) and early (E) antigens

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>At present, seroreactivity is not a valuable parameter for diagnosis of Human Papillomavirus (HPV) infection but, it is potentially valuable as marker of viral exposure in elucidating the natural history of this infection. More data are needed to asses the clinical relevance of serological response to HPV.</p> <p>Objectives</p> <p>The objective was to assess the clinical and epidemiological correlates of HPV-seroreactivity in a cohort of HIV-negative and HIV-positive women.</p> <p>Methods</p> <p>Seroreactivity of 96 women, evaluated in an ELISA test based on denatured HPV16 late (L) and early (E) antigens, was correlated with their clinical and epidemiological data previously collected for a multi-centre Italian study, HPV-PathogenISS study.</p> <p>Results</p> <p>No significant correlation was found between HPV DNA detection and seroreactivity. Women, current smokers showed significantly less seroreactivity to L antigens as compared with the non-smokers. HIV-positive women showed significantly less (66.7%) antibody response as compared with HIV-negative women (89.3%), with particularly impaired response to L antigens. Women, HIV-positive and current smokers, showed by far the lowest seroprevalence (33.3%) as compared to 75.9% among all other women (OR = 0.158; 95%CI 0.036–0.695, p = 0.014; Fisher's exact test). Importantly, this association did not loose its significance when controlled for confounding from age (continuous variable) in multivariate analysis or using Mantel-Haenszel test for age-groups.</p> <p>Conclusion</p> <p>It is tempting to speculate that HIV-positive current smokers comprise a special high-risk group, with highly impaired immunological response that could prevent eradication of persistent HPV infections and thus contribute to development of CIN3/CC.</p

    Mechanisms of Human Papillomavirus Type 16 Neutralization by L2 Cross-Neutralizing and L1 Type-Specific Antibodies▿

    No full text
    Pseudovirions of human papillomavirus type 16 (HPV16), the principal etiologic agent in 50% of cervical cancers, were used as a model system to investigate the cell surface interactions involved in the exposure of the broadly cross-neutralizing papillomavirus L2 epitopes. These neutralizing epitopes were exposed only after cell surface binding and a subsequent change in capsid conformation that permitted cleavage by the cellular protease furin at a specific highly conserved site in L2 that is immediately upstream of the cross-neutralizing epitopes. Unexpectedly, binding of L2 antibodies led to the release of the capsid/antibody complexes from the cell surface and their accumulation on the extracellular matrix. Study of the dynamics of exposure of the L2 epitopes further revealed that representatives of the apparently dominant class of L1-specific neutralizing antibodies induced by virus-like particle vaccination prevent infection, not by preventing cell surface binding but rather by preventing the conformation change involved in exposure of the L2 neutralizing epitope. These findings suggest a dynamic model of virion-cell surface interactions that has implications for both evolution of viral serotypes and the efficacy of current and future HPV vaccines
    corecore