534 research outputs found

    Virtual Prototyping of a Flexure-based RCC Device for Automated Assembly

    Get PDF
    The actual use of Industrial Robots (IR) for assembly systems requires the exertion of suitable strategies allowing to overcome shortcomings about IR poor precision and repeatability. In this paper, the practical issues that emerge during common \ue2\u80\u9cpeg-in-hole\ue2\u80\u9d assembly procedures are discussed. In particular, the use of passive Remote Center of Compliance (RCC) devices, capable of compensating the IR non-optimal performance in terms of repeatability, is investigated. The focus of the paper is the design and simulation of a flexure-based RCC that allows the prevention of jamming, due to possible positioning inaccuracies during peg insertion. The proposed RCC architecture comprises a set of flexural hinges, whose behavior is simulated via a CAE tool that provides built-in functions for modelling the motion of compliant members. For given friction coefficients of the contact surfaces, these numerical simulations allow to determine the maximum lateral and angular misalignments effectively manageable by the RCC device

    Editorial: Exploiting wheat biodiversity and agricultural practices for tackling the effects of climate change

    Get PDF
    Editorial: Exploiting wheat biodiversity and agricultural practices for tackling the effects of climate chang

    Analysis of the Energy Consumption of a Novel DC Power Supplied Industrial Robot

    Get PDF
    The energy consumption and electrical characteristics of a novel direct current (DC) power supplied industrial robot prototype are compared and analyzed with a state of the art alternating current (AC) supplied industrial robot. An extensive set of experiments shows an important reduction of the total energy consumption for different electrical power profiles measured in various robot trajectories with specific working temperatures. The recuperated energy is also analyzed in the different scenarios. Experimental results show that a DC type robot can be up to 12.5% more energy-efficient than an equivalent AC type robot

    Comparison of Lipoprotein Based Insulin Resistance Score and Traditional Risk Factors in Adolescents with Obesity

    Get PDF
    Click the PDF icon to download the abstract

    Carotenoid Pigment Content in Durum Wheat (Triticum turgidum L. var durum): An Overview of Quantitative Trait Loci and Candidate Genes

    Get PDF
    Carotenoid pigment content is an important quality trait as it confers a natural bright yellow color to pasta preferred by consumers (whiteness vs. yellowness) and nutrients, such as provitamin A and antioxidants, essential for human diet. The main goal of the present review is to summarize the knowledge about the genetic regulation of the accumulation of pigment content in durum wheat grain and describe the genetic improvements obtained by using breeding approaches in the last two decades. Although carotenoid pigment content is a quantitative character regulated by various genes with additive effects, its high heritability has facilitated the durum breeding progress for this quality trait. Mapping research for yellow index and yellow pigment content has identified quantitative trait loci (QTL) on all wheat chromosomes. The major QTL, accounting for up to 60%, were mapped on 7L homoeologous chromosome arms, and they are explained by allelic variations of the phytoene synthase (PSY) genes. Minor QTL were detected on all chromosomes and associated to significant molecular markers, indicating the complexity of the trait. Despite there being currently a better knowledge of the mechanisms controlling carotenoid content and composition, there are gaps that require further investigation and bridging to better understand the genetic architecture of this important trait. The development and the utilization of molecular markers in marker-assisted selection (MAS) programs for improving grain quality have been reviewed and discussed

    Vascular endothelial growth factor and tryptase changes after chemoembolization in hepatocarcinoma patients

    Get PDF
    AIM: To evaluate vascular endothelial growth factor (VEGF) and tryptase in hepatocellular cancer (HCC) before and after trans-arterial chemoembolization (TACE). METHODS: VEGF and tryptase serum concentrations were assessed from 71 unresectable HCC patients before and after hepatic TACE performed by binding DC-Beads® to doxorubicin. VEGF levels were examined for each serum sample using the Quantikine Human VEGF-enzyme-linked immuno-absorbent assay (ELISA), whereas tryptase serum concentrations were assessed for each serum sample by means of fluoro-enzyme immunoassay (FEIA) using the Uni-CAP100 tool. Differences between serum VEGF and tryptase values before and after TACE were evaluated using Student t test. Person's correlation was used to assess the degree of association between the two variables. RESULTS: VEGF levels and serum tryptase in HCC patients before TACE had a mean value and standard deviation (SD) of 114.31 ± 79.58 pg/mL and 8.13 ± 3.61 μg/L, respectively. The mean levels and SD of VEGF levels and serum tryptase in HCC patients after TACE were 238.14 ± 109.41 pg/mL and 4.02 ± 3.03 μg/L. The changes between the mean values of concentration of VEGF and tryptase before treatment and after treatment was statistically significant (P < 0.000231 and P < 0.00124, by Wilcoxon-Mann-Whitney respectively). A significant correlation between VEGF levels before and after TACE and between tryptase levels before and after TACE was demonstrated (r = 0.68, P = 0.003; r = 0.84, P = 0.000 respectively). CONCLUSION: Our pilot results suggest that the higher serum VEGF levels and the lower tryptase levels following TACE may be potential biomarkers changing in response to therapy

    A comprehensive meta-QTL analysis for yield-related traits of durum wheat (Triticum turgidum L. var. durum) grown under different water regimes

    Get PDF
    Abiotic stress strongly affects yield-related traits in durum wheat, in particular drought is one of the main environmental factors that have effect on grain yield and plant architecture. In order to obtain new genotypes well adapted to stress conditions, the highest number of desirable traits needs to be combined in the same genotype. In this context, hundreds of quantitative trait loci (QTL) have been identified for yield-related traits in different genetic backgrounds and environments. Meta-QTL (MQTL) analysis is a useful approach to combine data sets and for creating consensus positions for the QTL detected in independent studies for the reliability of their location and effects. MQTL analysis is a useful method to dissect the genetic architecture of complex traits, which provide an extensive allelic coverage, a higher mapping resolution and allow the identification of putative molecular markers useful for marker-assisted selection (MAS). In the present study, a complete and comprehensive MQTL analysis was carried out to identify genomic regions associated with grain-yield related traits in durum wheat under different water regimes. A total of 724 QTL on all 14 chromosomes (genomes A and B) were collected for the 19 yield-related traits selected, of which 468 were reported under rainfed conditions, and 256 under irrigated conditions. Out of the 590 QTL projected on the consensus map, 421 were grouped into 76 MQTL associated with yield components under both irrigated and rainfed conditions, 12 genomic regions containing stable MQTL on all chromosomes except 1A, 4A, 5A, and 6B. Candidate genes associated to MQTL were identified and an in-silico expression analysis was carried out for 15 genes selected among those that were differentially expressed under drought. These results can be used to increase durum wheat grain yields under different water regimes and to obtain new genotypes adapted to climate change

    Using BioMart as a framework to manage and query pancreatic cancer data

    Get PDF
    We describe the Pancreatic Expression Database (PED), the first cancer database originally designed based on the BioMart infrastructure. The PED portal brings together multidimensional pancreatic cancer data from the literature including genomic, proteomic, miRNA and gene expression profiles. Based on the BioMart 0.7 framework, the database is easily integrated with other BioMart-compliant resources, such as Ensembl and Reactome, to give access to a wide range of annotations alongside detailed experimental conditions. This article is intended to give an overview of PED, describe its data content and work through examples of how to successfully mine and integrate pancreatic cancer data sets and other BioMart resources

    Fruit Development in Ficus carica L.: Morphological and Genetic Approaches to Fig Buds for an Evolution From Monoecy Toward Dioecy

    Get PDF
    The mechanism behind the bud evolution towards breba or main crop in Ficus carica L. is uncertain. Anatomical and genetic studies may put a light on the possible similarities/differences between the two types of fruits. For this reason, we collected complimentary data from anatomical, X-ray imaging, and genetic techniques. The RNA seq together with structural genome annotation allowed the prediction of 34,629 known genes and 938 novel protein-coding genes. Transcriptome analysis of genes during bud differentiation revealed differentially expressed genes in two fig varieties (Dottato and Petrelli) and in breba and main crop. We chose Dottato and Petrelli because the first variety does not require pollination to set main crop and the latter does; moreover, Petrelli yields many brebas whereas Dottato few. Of the 1,615 and 1,904 loci expressed in Dottato and Petrelli, specifically in breba or main crop, respectively, only 256 genes appeared to be transcripts in both varieties. The buds of the two fig varieties were observed under optical microscope and using 3D X-ray tomography, highlighting differences mainly related to the stage of development. The X-ray images of buds showed a great structural similarity between breba and main crop during the initial stages of development. Analysis at the microscope indicated that inflorescence differentiation of breba was split in two seasons whereas that of main crop started at the end of winter of season 2 and was completed within 2 to 3 months. The higher expression of floral homeotic protein AGAMOUS in breba with respect to main crop, since this protein is required for normal development of stamens and carpels in the flower, may indicate an original role of these fruits for staminate flowers production for pollination of the main crop, as profichi in the caprifig. Several genes related to auxin (auxin efflux carrier, auxin response factor, auxin binding protein, auxin responsive protein) and to GA synthesis (GA20ox) were highly expressed in brebas with respect to main crop for the development of this parthenocarpic fruit
    • …
    corecore