3,279 research outputs found

    The cutaneous 'rabbit' illusion affects human primary sensory cortex somatopically

    Get PDF
    We used functional magnetic resonance imaging (fMRI) to study neural correlates of a robust somatosensory illusion that can dissociate tactile perception from physical stimulation. Repeated rapid stimulation at the wrist, then near the elbow, can create the illusion of touches at intervening locations along the arm, as if a rabbit hopped along it. We examined brain activity in humans using fMRI, with improved spatial resolution, during this version of the classic cutaneous rabbit illusion. As compared with control stimulation at the same skin sites (but in a different order that did not induce the illusion), illusory sequences activated contralateral primary somatosensory cortex, at a somatotopic location corresponding to the filled-in illusory perception on the forearm. Moreover, the amplitude of this somatosensory activation was comparable to that for veridical stimulation including the intervening position on the arm. The illusion additionally activated areas of premotor and prefrontal cortex. These results provide direct evidence that illusory somatosensory percepts can affect primary somatosensory cortex in a manner that corresponds somatotopically to the illusory percept

    Object-guided Spatial Attention in Touch: Holding the Same Object with Both Hands Delays Attentional Selection

    Get PDF
    Abstract Previous research has shown that attention to a specific location on a uniform visual object spreads throughout the entire object. Here we demonstrate that, similar to the visual system, spatial attention in touch can be object guided. We measured event-related brain potentials to tactile stimuli arising from objects held by observers' hands, when the hands were placed either near each other or far apart, holding two separate objects, or when they were far apart but holding a common object. Observers covertly oriented their attention to the left, to the right, or to both hands, following bilaterally presented tactile cues indicating likely tactile target location(s). Attentional modulations for tactile stimuli at attended compared to unattended locations were present in the time range of early somatosensory components only when the hands were far apart, but not when they were near. This was found to reflect enhanced somatosensory processing at attended locations rather than suppressed processing at unattended locations. Crucially, holding a common object with both hands delayed attentional selection, similar to when the hands were near. This shows that the proprioceptive distance effect on tactile attentional selection arises when distant event locations can be treated as separate and unconnected sources of tactile stimulation, but not when they form part of the same object. These findings suggest that, similar to visual attention, both space- and object-based attentional mechanisms can operate when we select between tactile events on our body surface.</jats:p

    ‘The show must go on!’ Fieldwork, mental health and wellbeing in Geography, Earth and Environmental Sciences

    Get PDF
    Fieldwork is central to the identity, culture and history of academic Geography, Earth and Environmental Sciences (GEES). However, in this paper we recognise that, for many academic staff, fieldtrips can be a profoundly challenging “ordeal,” ill‐conducive to wellness or effective pedagogic practice. Drawing on research with 39 UK university‐based GEES academics who self‐identify as having a mental health condition, we explore how mental health intersects with spaces and expectations of fieldwork in Higher Education. We particularly focus on their accounts of undertaking undergraduate residential fieldtrips and give voice to these largely undisclosed experiences. Their narratives run counter to normative, romanticised celebrations of fieldwork within GEES disciplines. We particularly highlight recurrent experiences of avoiding fieldwork, fieldwork‐as‐ ordeal, and “coping” with fieldwork, and suggest that commonplace anxieties within the neoliberal academy – about performance, productivity, fitness‐to‐work, self‐presentation, scrutiny and fear‐of‐falling‐behind – are felt particularly intensely during fieldwork. In spite of considerable work to make fieldwork more accessible to students, we find that field‐based teaching is experienced as a focal site of distress, anxiety and ordeal for many GEES academics with common mental health conditions. We conclude with prompts for reflection about how fieldwork could be otherwise

    Can the Future Influence the Present?

    Get PDF
    One widely accepted model of classical electrodynamics assumes that a moving charged particle produces both retarded and advanced fields. This formulation first appeared at least 75 years ago. It was popularized in the 1940\u27s by work of Wheeler and Feynman. But the most fundamental question associated with the model has remained unanswered: When (if ever) does the two-body problem have a unique solution? The present paper gives an answer in one special case. Imagine two identical charged particles alone in the universe moving symmetrically along the x axis. One is at x(t) and the other is at −x(t). Their motion is then governed by a system of functional differential equations involving both retarded and advanced arguments. This system together with the Newtonian initial data x(0)=x0\u3e0 and x′(0)=0 has a unique solution for all time provided x0 is sufficiently large. Perhaps the existence and uniqueness proof given for this special case will pave the way for more general results on this curious two-body problem

    Tracking Down a Critical Halo Mass for Killing Galaxies through the Growth of the Red-Sequence

    Full text link
    Red-sequence galaxies record the history of terminated star-formation in the Universe and can thus provide important clues to the mechanisms responsible for this termination. We construct composite samples of published cluster and field galaxy photometry in order to study the build-up of galaxies on the red-sequence, as parameterised by the dwarf-to-giant ratio (DGR). We find that the DGR in clusters is higher than that of the field at all redshifts, implying that the faint end of the red-sequence was established first in clusters. We find that the DGR evolves with redshift for both samples, consistent with the ``down-sizing'' picture of star formation. We examine the predictions of semi-analytic models for the DGR and find that neither the magnitude of its environmental dependence nor its evolution is correctly predicted in the models. Red-sequence DGRs are consistently too high in the models, the most likely explanation being that the strangulation mechanism used to remove hot gas from satellite galaxies is too efficient. Finally we present a simple toy model including a threshold mass, below which galaxies are not strangled, and show that this can predict the observed evolution of the field DGR.Comment: MNRAS letters accepted. 5 pages, 1 figur

    Vascular physiology drives functional brain networks

    Get PDF
    We present the first evidence for vascular regulation driving fMRI signals in specific functional brain networks. Using concurrent neuronal and vascular stimuli, we collected 30 BOLD fMRI datasets in 10 healthy individuals: a working memory task, flashing checkerboard stimulus, and CO2 inhalation challenge were delivered in concurrent but orthogonal paradigms. The resulting imaging data were averaged together and decomposed using independent component analysis, and three “neuronal networks” were identified as demonstrating maximum temporal correlation with the neuronal stimulus paradigms: Default Mode Network, Task Positive Network, and Visual Network. For each of these, we observed a second network component with high spatial overlap. Using dual regression in the original 30 datasets, we extracted the time-series associated with these network pairs and calculated the percent of variance explained by the neuronal or vascular stimuli using a normalized R2 parameter. In each pairing, one network was dominated by the appropriate neuronal stimulus, and the other was dominated by the vascular stimulus as represented by the end-tidal CO2 time-series recorded in each scan. We acquired a second dataset in 8 of the original participants, where no CO2 challenge was delivered and CO2 levels fluctuated naturally with breathing variations. Although splitting of functional networks was not robust in these data, performing dual regression with the network maps from the original analysis in this new dataset successfully replicated our observations. Thus, in addition to responding to localized metabolic changes, the brain’s vasculature may be regulated in a coordinated manner that mimics (and potentially supports) specific functional brain networks. Multi-modal imaging and advances in fMRI acquisition and analysis could facilitate further study of the dual nature of functional brain networks. It will be critical to understand network-specific vascular function, and the behavior of a coupled vascular-neural network, in future studies of brain pathology

    Architecture of the Andromeda galaxy : a quantitative analysis of clustering in the inner stellar halo

    Get PDF
    We present a quantitative measurement of the amount of clustering present in the inner ∼30 kpc of the stellar halo of the Andromeda galaxy (M31). For this we analyse the angular positions and radial velocities of the carefully selected planetary nebulae in the M31 stellar halo. We study the cumulative distribution of pairwise distances in angular position and line-of-sight velocity space, and find that the M31 stellar halo contains substantially more stars in the form of close pairs as compared to that of a featureless smooth halo. In comparison to a smoothed/scrambled distribution, we estimate that the clustering excess in the M31 inner halo is roughly 40 per cent at maximum and on average ∼20 per cent. Importantly, comparing against the 11 stellar halo models of Bullock & Johnston, which were simulated within the context of the ΛCDM (Λ cold dark matter) cosmological paradigm, we find that the amount of substructures in the M31 stellar halo closely resembles that of a typical ΛCDM halo.Publisher PDFPeer reviewe

    An earth pole-sitter using hybrid propulsion

    Get PDF
    In this paper we investigate optimal pole-sitter orbits using hybrid solar sail and solar electric propulsion (SEP). A pole-sitter is a spacecraft that is constantly above one of the Earth's poles, by means of a continuous thrust. Optimal orbits, that minimize propellant mass consumption, are found both through a shape-based approach, and solving an optimal control problem, using a direct method based on pseudo-spectral techniques. Both the pure SEP case and the hybrid case are investigated and compared. It is found that the hybrid spacecraft allows consistent savings on propellant mass fraction. Finally, is it shown that for sufficiently long missions (more than 8 years), a hybrid spacecraft, based on mid-term technology, enables a consistent reduction in the launch mass for a given payload, with respect to a pure SEP spacecraft

    Arterial CO2 fluctuations modulate neuronal rhythmicity: Implications for MEG and fMRI studies of resting-state networks

    Get PDF
    A fast emerging technique for studying human resting state networks (RSNs) is based on spontaneous temporal fluctuations in neuronal oscillatory power, as measured by magnetoencephalography. However, it has been demonstrated recently that this power is sensitive to modulations in arterial CO2 concentration. Arterial CO2 can be modulated by natural fluctuations in breathing pattern, as might typically occur during the acquisition of an RSN experiment. Here, we demonstrate for the first time the fine-scale dependence of neuronal oscillatory power on arterial CO2 concentration, showing that reductions in alpha, beta, and gamma power are observed with even very mild levels of hypercapnia (increased arterial CO2). We use a graded hypercapnia paradigm and participant feedback to rule out a sensory cause, suggesting a predominantly physiological origin. Furthermore, we demonstrate that natural fluctuations in arterial CO2, without administration of inspired CO2, are of a sufficient level to influence neuronal oscillatory power significantly in the delta-, alpha-, beta-, and gamma-frequency bands. A more thorough understanding of the relationship between physiological factors and cortical rhythmicity is required. In light of these findings, existing results, paradigms, and analysis techniques for the study of resting-state brain data should be revisited

    Populating Stellar Orbits Inside a Rotating, Gaseous Bar

    Get PDF
    In an effort to better understand the formation and evolution of barred galaxies, we have examined the properties of equatorial orbits in the effective potential of one model of a rapidly rotating, steady-state gas-dynamical bar that has been constructed via a self-consistent hydrodynamical simulation. Using a ``Restriction Hypothesis'' to determine initial conditions, we find that a significant fraction of orbits in this potential are quasi-ergodic and that regular orbits have a ``bowtie'' shape in contrast to the more typical x1 orbits. This bowtie orbit should give a boxy-peanut shape to such systems.Comment: Accepted for publication in The Astrophysical Journal; 29 pages, 29 gif figure
    corecore