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An Earth Pole-Sitter Using Hybrid Propulsion 

Matteo Ceriotti1 and Colin R. McInnes2 
University of Strathclyde, Glasgow G1 1XJ, United Kingdom 

In this paper we investigate optimal pole-sitter orbits using hybrid solar sail and solar 
electric propulsion (SEP). A pole-sitter is a spacecraft that is constantly above one of the 
Earth’s poles, by means of a continuous thrust. Optimal orbits, that minimize propellant 
mass consumption, are found both through a shape-based approach, and solving an optimal 
control problem, using a direct method based on pseudo-spectral techniques. Both the pure 
SEP case and the hybrid case are investigated and compared. It is found that the hybrid 
spacecraft allows consistent savings on propellant mass fraction. Finally, is it shown that for 
sufficiently long missions (more than 8 years), a hybrid spacecraft, based on mid-term 
technology, enables a consistent reduction in the launch mass for a given payload, with 
respect to a pure SEP spacecraft. 

Nomenclature 
a  = Acceleration, m/s2 

A  = Area, m2 
c  = Speed of light in vacuum, 83 10  m s  

d  = Distance from the Earth, AU 
f  = Force vector, N 

,g h  = Coefficients for non-ideal sail 

i  = Generic step 

spI  = Specific impulse, s 

0g  = Standard gravity acceleration on Earth’s surface, 29.81 m s  

G  = Universal constant of gravitation, 11 2 26.672 10 Nm kg  

J  = Cost function 

SL  = Solar luminosity,  263.8277 10  W
m  = Mass, kg 

propm  = Propellant mass, kg 

tankm  = Propellant tank mass, kg 

thrustersn  = Number of thrusters 

SEPm  = SEP thruster mass, kg 

gimbalm  = Thruster gimbal mass, kg 

plm  = Payload mass, kg 

m̂  = Direction of solar sail acceleration 
n̂  = Solar sail normal unit vector 
P  = Solar radiation pressure, Pa 
r  = Position vector 
r  = Reflectivity coefficient 
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1r  = Position vector with respect to the larger primary mass 

2r  = Position vector with respect to the smaller primary mass 
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ˆ
1 1 1

ˆˆ , ,r θ φ  = Unit vectors defining axes of reference frame (B) 

t  = Time, d 

t̂  = Solar sail tangent unit vector (in the plane of Sun vector) 
T  = Thrust vector, N 
ˆ Tu  = Direction of thrust vector 

U  = Effective potential 

ev  = Exhaust gas velocity, m/s 

v  = Velocity vector 
V  = Gravitational potential 
w  = Weight 

W  = Energy flux density of the Sun at 1 AU, 21367 W m  

ˆ ˆ ˆ, ,x y z  = Unit vectors defining axes of reference frame (A) 

  = Cone angle, deg 
  = Sail lightness number 

  = Clock angle, deg 

eq  = Obliquity of equator on the ecliptic (23.5 deg) 

t  = Time increment 
  = Angle between solar sail acceleration and Sun vector 

  = Dimensionless mass of the Earth, 63.0404 10  in Sun-Earth system 

  = Sail loading, kg/m2 

   = Critical sail loading ( 31.53 10  kg m 2  for Sun-Earth system) 

  = Center-line angle 

  = Auxiliary potential 
ω  = Angular velocity, rad/s 

Subscripts 
0  = Referred to beginning of the mission 
1  = Referred to the larger primary mass (Sun) 
2  = Referred to the smaller primary mass (Earth) 
f  = Referred to final time or end of the mission 

l  = Lower bound 
max  = Maximum 
s  = Referred to the solar sail 
T  = Referred to thrust vector 
TF  = Referred to the thin film solar cells 
u  = Upper bound 

Superscripts 
  = Optimal 

 A ,   = Expressed in reference frame (A), (B) B

̂  = Unit vector 
  = Differentiation with respect to time 

I. Introduction 
OLAR electric propulsion (SEP) is a mature technology that provides a spacecraft with a relatively low thrust 
(of the order of a fraction of a Newton).1 However, by accelerating ions to high velocity using an electro-

magne
S 

tic field, its specific impulse is higher (up to several thousands of seconds) than any propulsion system based 
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on chemical combustion. Nevertheless, despite the high efficiency, the thrusting time and hence the mission duration 
is always limited by the amount of propellant on-board. 

In contrast, solar sailing (see Ref. 2, pp. 1-29) is a prop
ar radiation pressure due to the solar photons impinging on a large, highly reflecting surface (the sail) to generate 

thrust. Despite the original idea of solar sailing being rather old,3 so far no spacecraft exploiting this intriguing idea 
has been flown, mainly due to the difficulties of deploying a large, light surface in orbit. However, the concept has 
never been abandoned; several studies are still ongoing,4-5 including mission design,6 due to the interesting potential 
of enabling missions that are not constrained by propellant mass availability. For these reasons, solar sails seem to 
be suitable for potentially long duration missions that need a small, but continuous, amount of thrust. One example 
of these applications are interplanetary transfers,7 in which a Sun-centered trajectory is generated spiraling inwards 
or outwards from the Earth’s orbit by using a small thrust force. Solar sails have also been investigated to generate 
artificial equilibrium points, for example in the proximity of the Lagrange points of the Sun-Earth8 or Sun-Moon9 
system: the effect of the sail is that of creating regions in which the spacecraft can be stationary with respect to the 
two main bodies.10 These regions can be consistently far from the classical Lagrange points, thus enabling a whole 
range of new applications, from telecommunications and data relay to Earth and Moon observation. 

Finally, a novel concept is highly non-Keplerian orbits (NKO), in which a continuous acceler
erate periodic orbits that do not follow the natural dynamics of the system.11 Examples of these orbits in the two-

body problem are displaced Sun-centered orbits for observing the solar poles, or displaced geostationary orbits with 
a 1-day period, for increasing the capacity of the geostationary ring.12 If a second primary is considered, then 
displaced orbits in the proximity of the Lagrange points are possible.13-15 

It has already been noted that at present the technology readiness level (T
ar sail is relatively low, making such a mission high risk. Another disadvantage of solar sailing is that it is not 

possible to generate an acceleration component directed towards the Sun. This intrinsic limitation prevents the sail 
being used for a number of applications. 

Considering advantages and limitation
bining a solar sail and SEP arises. Hybridizing the two propulsion systems is a recent idea,16 nevertheless 

research is flourishing in this field, investigating its potential for novel, interesting applications. Baig and McInnes 
proposed the use of a hybrid sail for generating artificial equilibria above L1 in the Sun-Earth system for Earth 
observation;17 Mengali and Quarta investigated optimal interplanetary transfers to Venus and Mars using an indirect 
optimization method;18-19 Quarta et al. also considered hybridizing SEP with an electric sail;20 Simo and McInnes 
exploited hybrid propulsion to find displaced periodic orbits in the Earth-Moon system;21 finally, JAXA has 
developed a powered hybrid solar sail demonstrator, IKAROS.22 

The reason for this interest is due to the fact that in the h
plexity, the two propulsion systems complement each other, cancelling their reciprocal disadvantages and 

limitations. In principle, SEP can provide thrust in any direction (through attitude maneuvers or a gimbal-mounted 
thruster), thus it can provide the missing acceleration component towards the Sun, that the sail cannot generate. 
Similarly, the hybrid spacecraft can be seen as an SEP spacecraft, in which an auxiliary solar sail provides part of 
the acceleration, enabling saving of propellant, and lower demand on the electric thruster, possibly with some 
intervals in which it could be turned off. Moreover, the reliability of the whole system is increased, for two reasons. 
The first is that the solar sail is only providing part of the necessary acceleration, and hence it can be smaller than 
what would be required for a pure sail spacecraft. The second is that the spacecraft is not relying on the sail only; if, 
for example, the sail fails to deploy, then the SEP is still available: in this case, a degraded, possibly shorter mission 
can be foreseen. In this sense, the hybrid spacecraft can be seen as a way to gradually introduce solar sails for space 
applications, and hence to reduce the advancement degree of difficulty (AD2, Ref. 23) in the TRL scale. 

In this paper, we present the orbital dynamics of a hybrid propulsion spacecraft, applied to a particul
O: so-called pole-sitter orbits. A pole-sitter is a spacecraft that is constantly above one of the Earth’s poles, i.e. 

lying on the Earth’s polar axis.24 The distance from the pole can vary during the mission or be constant. In the latter 
case the spacecraft is stationary in an Earth-centered, Earth-fixed reference frame, and the problem can be 
formulated as finding the required acceleration for maintaining an artificial equilibrium point. If the gravitational 
attraction of the Sun is also considered and a Sun-Earth rotating frame is considered, then the pole-sitter spacecraft 
describes, in the Sun-Earth frame, a non-Keplerian orbit, as will be shown in the following sections. 

The concept of having a spacecraft in a position that allows direct-link telecommunication and v
he Earth poles has been already investigated.24-26 The pole-sitter can provide a platform for continuous, real-time, 

medium-resolution observation of the Earth poles, with a full hemispheric view. 
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Traditionally, continuous Earth observation is performed with equatorial geostationary platforms, which cannot 
cover high latitude regions (see for example Ref. 27, pp. 165-168). For polar areas, a constellation of spacecraft with 
highly-inclined low or medium Earth orbits could also be used:28 in this case, the observation is not continuous, but 
it relies on the passage of one spacecraft above the point of interest. The frequency of the passages depends on the 
number of spacecraft in the constellation and the configuration of the constellation. In any case, more than one 
spacecraft is required, and the full hemispheric view must be reconstructed through a set of different images. 

A continuous, hemispherical, real-time view of the pole will enable a wide range of new applications. It is well 
known that line-of-sight telecommunications to conventional spacecraft in geostationary orbits is not possible at 
high latitudes and polar regions. Telecommunication with polar regions will be a key issue in future as changes to 
the arctic ice pack opens navigation channels for shipping. Also, the pole-sitter spacecraft could provide a platform 
for real-time observation of the poles for climate science at modest resolution, as opposed to periodic images that 
can be obtained by classical high-inclination orbits. 

A stationary spacecraft in the rotating Sun-Earth system for Earth observation and data relaying was investigated 
using a pure solar sail by McInnes in Ref. 25. It was found that it is not possible to have a pure sail permanently 
fixed above a pole of the Earth. In addition, if a realistic sail is used, the volume in which equilibria are possible on 
the night side of the Earth (far from the Sun) is limited: high sail performances are required to maintain a pure sail in 
these regions, where the spacecraft can guarantee coverage of the North Pole in winter or the south pole in summer. 

This work was successively extended by Baig and McInnes:17 in that paper, it was proposed to place a spacecraft 
in the same artificial equilibrium points of the Sun-Earth rotating system, but using hybrid SEP/sail propulsion. The 
authors showed that, considering an SEP spacecraft with a given level of thrust, the regions in which the spacecraft 
can stay in equilibrium are extended by adding a solar sail. Furthermore, for the same level of thrust, a sail allows 
the spacecraft to stay closer to the pole, or to stay in the same point with a lower level of thrust, thus saving 
propellant. Nevertheless, a stationary spacecraft in the Sun-Earth rotating frame does not follow the apparent 
rotation of the Earth’s polar axis. Therefore, the full hemispheric view of the pole only happens at one particular 
time in the year, while at other epochs the polar region is partially out of sight. 

In this work, we propose an extension of both the pure-SEP pole-sitter proposed by Driver,24 and the hybrid 
stationary spacecraft proposed by Baig and McInnes.17 With respect to the former, this work extends Driver’s 
analysis in two directions: the first is considering a hybrid propulsion spacecraft. The second is the use of optimal 
control theory to find optimal orbits (with respect to SEP fuel consumption). This gives more flexibility for trading 
off the shape of the orbit (namely the excursion along the polar axis), taking into account constraints on the altitude, 
while minimizing propellant consumption. This will result in optimal orbits that can produce an additional saving in 
propellant mass. In addition, it will be shown that the addition of the solar sail helps both by saving propellant, and, 
in some cases, in generating periods in which the SEP can be switched off. 

In the latter work,17 Baig and McInnes introduced the hybrid propulsion spacecraft, but the analysis was 
performed only at two artificial equilibrium points, which are above the Earth pole at summer and winter solstices 
respectively. The continuous pole-sitter orbits presented in this paper using hybrid SEP/solar sail propulsion are a 
practical realization of the solar sail pole-sitter orbits proposed earlier by Forward.26 

The paper is organized as follows. In section II, the equations of motion of the hybrid SEP/sail spacecraft will be 
presented. Section III presents the orbital dynamics of a pole-sitter spacecraft, and will introduce a shape-based 
approach to find the control law for enabling a given pole-sitter orbit. However, this method does not lead to fully 
optimal solutions, for which an optimal control problem is to be solved. In this work, a direct method based on 
pseudo-spectral techniques will be used. Section IV will present, after a brief summary of the technique, the optimal 
orbits that were designed. Finally, Section V compares, with a preliminary mass budget, the launch mass of the SEP 
spacecraft and the hybrid spacecraft in different scenarios. 

II. Equations of Motion 
The circular restricted three-body problem (CR3BP) framework is considered. This model describes the motion 

of an infinitesimal mass (the spacecraft) under the gravitational attraction of two large masses (primaries), which are 
orbiting around their common center of mass in circular motion. The model neglects the influence of the spacecraft 
on the motion of the primaries. As is common, a rotating reference frame is considered, in which the origin is in the 
center of mass of the system, the -axis is collinear with the two primaries, pointing towards the smaller mass, the 

-axis is aligned with the angular velocity of the system, and the -axis completes the right-handed Cartesian 

reference frame (see 

x̂
ẑ ŷ

Fig. 1). This reference frame will be referred to as (A): 
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Fig. 1. Reference frame (A): the restricted three body problem. 
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Note that this frame is not inertial. In the following, all the vectors are expressed in this frame, unless specified 
by a different superscript. Therefore, the superscript (A) will be omitted when not strictly needed. 

The masses of the two primaries are denoted  and  (with ), and 1m 2m 1m m 2 ˆω z  the angular velocity of the 

system. The equations that describe the motion of the spacecraft in this system are: 
  2 V       r ω r ω ω r  a  (1) 

where  is the position vector, a  is the acceleration due to external, non-gravitational forces (i.e. thrust), and V  is 
the gravitational potential due to the primaries: 

r

  
1 2

1
V

r r

  
   

 
r  

The non-dimensional mass of the smaller primary   is defined as: 

  2 1 2m m m    

such that the gravitational constants of the two primaries become: 

 1

2

1Gm

Gm




 


 

where  is the universal constant of gravitation. G
In the following, the system of equations will be used in their canonical non-dimensional form, that is assuming 
1 
x̂

 and the unit of distance being the separation of the two primaries. With these assumption, the position along 
the -axis of  is 1m  , and the position of  is 12m  . In this work, the primary  is the Sun, and the primary 

 is the Earth: for these bodies, 
1m

2m 63.0404 10

2m

 . The two vectors  and  are the position of the spacecraft with 

respect to the two primaries  and  respectively. These are defined as (see 
1r 2r

1m Fig. 1): 

 
 
 

1

2

0 0

0 0 1

T

T





 

  

r r

r r
 (2) 

If an auxiliary potential is now defined as: 

    2 21

2
x y   r  

it can be shown that 
     ω ω r  

and hence the effective potential can be introduced as 
 U V   
allowing Eq. (1) to be written as: 

x̂

ẑ

ω

2m

1m

2r

1r
 ŷ r

 
1 



American Institute of Aeronautics and Astronautics 



 

 2 U    r ω r  a  (3) 
In this work, the acceleration  is from two contributions: one due to the solar radiation pressure on the 

spacecraft sail, 
a

sa ; the second is provided by the thrust of the solar electric propulsion (SEP) system, . The two 

fractions of the total acceleration vector will be described in the following sub-sections. 
Ta

A. Solar Sailing 
Solar sailing is the exploitation of the solar radiation pressure produced by photons on a surface of the spacecraft 

(the sail) to produce a force, and thus an acceleration, without using any propellant. In this section a non-perfect 
solar sail force model will be presented that will be used in the following analysis. 

According to Ref. 2, p. 49, an approximate expression for the force on a flat surface, of area A, whose reflection 
coefficient is , is: r
    2 ˆˆ1 cos 1 cos sins PA r r       f n  t  (4) 

where  is the solar radiation pressure at distance r  from the Sun (approximated as a point source), expressed as: P 1

 
2

1

1

4
SL

P
c r

  (5) 

with  being the solar luminosity and  the speed of light. The term SL c 2
14SL r  is the energy flux of the Sun at 

distance . The force is expressed through its two components: one normal to the sail, along n , and one 

perpendicular to the sail, in the plane containing the Sun vector , along t  (see 

1r ˆ

1̂r ˆ Fig. 2). 

The angle between the direction of the Sun vector  r  and the normal to the solar sail  is known as the cone 

angle 
1̂ n̂

 . It holds that: 
 1

ˆ ˆcos  n r  

Equation (4) assumes specular reflection and absorption of the photons. Scattered reflection and emission by re-
radiation are neglected. The spacecraft has a relatively large surface, the solar sail, which provides the necessary 
acceleration. Ideally a solar sail is made of a light, thin film of highly reflective material, since maximizing its 
reflectivity maximizes the magnitude of the force, as can be seen from Eq. (4) when . 1r 

In the case under consideration, we cannot assume the sail material to be uniform. In fact, part of the sail is 
covered with thin film solar cells (TFSC), that provide the necessary electrical power for the SEP engine. The TFSC 
has different reflection properties than the rest of the sail (its reflectivity is lower, as part of the light is absorbed and 
converted into solar power). 

An area sA  of the sail is covered with highly reflective material, with reflectivity coefficient sr , while the 

remaining surface 



TFA  is covered with TFSC with reflectivity coefficient r . The total force then becomes: TF

 
       
         

2 2

2

ˆ ˆˆ ˆ1 cos 1 cos sin 1 cos 1 cos sin

ˆˆ1 1 cos 1 1 cos sin

s s s s TF TF TF

TF TF s s TF TF s s

PA r r PA r r

P A r A r A r A r

    

  

            
         

f n t n

n t

   

   

 t
 

Considering that the total sail area is TF sA A A  : 

    2 ˆˆ1 cos 1 cos sinTF TF
s s TF s s TF s

A A
PA r r r r r r

A A
  

               
    

f n      t  

 

 6

 
Fig. 2. Definition of the cone and center-line angles (plane of the figure is perpendicular to the sail, 
containing the Sun vector r1). 

n̂ m̂

1̂r




t̂

1r
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Defining the two coefficients, functions of the two material reflectivities and area ratio: 

 
 

 

1

1

TF
s TF s

TF
s TF s

A
g r r

A
A

h r r r
A

r   

   

 

 




 (6) 

the force on the sail becomes: 

 ˆˆcos sin coss PA g h  f n t   (7) 

The acceleration of the spacecraft (of mass m) due to this force can be expressed completely inserting Eq. (5) 
into (7), and dividing by the spacecraft mass m: 

 
2

1

1 ˆˆcos sin cos
4

s S
s

L
A g h

m c r m
 


  

f
a n t  (8) 

The system loading m A   is now defined as the ratio between the mass of the spacecraft and the total solar 

sail area, and the dimensionless parameter  , commonly known as sail lightness number, is defined as 

 





  (9) 

where the critical sail loading    is a constant for the Sun-Earth system: 

 32 1
1.53 10  kg

4 1
SL

m
c


 

   


2  (10) 

Here 11 Gm   is the dimensional gravitational parameter of the Sun: hence, the sail lightness number can also 

be interpreted as the ratio between the gravitational acceleration of the Sun and the solar sail acceleration. 
By substituting Eqs. (9) and (10) in (8), a more compact form is obtained as: 

 
2

1

1 1 ˆˆcos sin cos
2s g h

r

    a n t  (11) 

Since the mass of the spacecraft varies due to propellant consumption, the parameter   varies during the 

mission. Therefore, the (constant) lightness number at beginning of life 0 , is defined such that 0
0

m

m
  , where 

 is the mass of the spacecraft at a initial reference time , and therefore the solar sail acceleration becomes an 

explicit function of the mass: 
0m 0t

 0
0 2

1

1 1 ˆˆcos sin cos
2s

m
g h

m r

    a n t  (12) 

If the unit vector  is defined in the direction of m̂ sa , Eq. (12) can be rewritten as 

 2 2 2 20
0 2

1

1 1
ˆ cos sin cos

2s s

m
a g h

m r


ˆ  

  a m m  (13) 

Therefore, the solar sail acceleration depends on the mass of the spacecraft, on its position with respect to the 
Sun , and on its attitude, through 1r   and , in addition to other technological and physical parameters. The 

direction of the solar sail acceleration  with respect to the Sun-line is identified by the angle 

m̂

m̂   (see Fig. 2). It is 
possible to find a relationship between   and  , such that the acceleration (13) can be expressed as a function of 
the cone angle   only. This is achieved by defining the center-line angle  , as the angle between  and . 

Decomposing the acceleration 

m̂ n̂

(12) into its two components, and taking their ratio, it can be seen that: 

 ,

,

tan tans t

s n

a h

a g
    (14) 

Then, considering the geometric relationship      (shown in Fig. 2), and solving for  , it can be seen that: 

 
 

2

tan
tan

tan

g h

g h










 (15) 

Note that the expression for the solar sail acceleration (13) reduces to the ideal case (compare with Ref. 2, p. 216) 
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  2

12
1

1
ˆ ˆ ˆ

s r

 
 a n r n  

if there is no mass consumption ( ) and a perfectly reflecting sail (0m m 0, 1TF sA r  ), and the sail force is purely 

normal to the sail surface. In the case of partially reflecting material for the sail, the sail force is not purely normal to 
the sail, but instead a tangential component is introduced. 

An intrinsic limitation of solar sailing is that the thrust force can only point away from the Sun. This is 
equivalent to stating that the normal vector  cannot be directed towards the Sun, which translates into the attitude 
constraint: 

n̂

 0 2    

As discussed, the cone angle   defines the pitch attitude of the solar sail with respect to the Sun direction . 

The attitude of the sail around this vector is determined through the so called clock angle 
1̂r

 : this is the angle, 
measured around , of the component of  perpendicular to , starting from the vertical plane (see 1̂r n̂ 1̂r Fig. 3). To 

uniquely define the direction of  in space, it is useful to define a new reference frame, named (B), depending on 
the position of the spacecraft, defined as: 

m̂

 

1

1
1

1

1 1 1

ˆ

ˆˆˆ( ) :
ˆˆ

ˆˆ ˆ

B








  

r

z r
θ

z r

φ r θ

 

Note that this reference frame coincides with a spherical reference frame (radius, right ascension, declination) 
centered on the Sun. 

A vector defined in the reference frame (B) can be expressed in frame (A) considering the transformation: 

  (16)    
1 1 1

ˆˆ ˆ
TA    u r θ φ u B

Also note that the clock angles of  and  are coincident, therefore the same symbol n̂ m̂   will be used. 
The Cartesian coordinates of the unit vectors  and , expressed as a function of cone and clock angles, can be 

defined in frame (B) by: 
n̂ m̂

  
cos

ˆ sin sin

sin cos

B


 
 

 
   
  

n ;  
cos

ˆ sin sin

sin cos

B


 
 

 
   
  

m  (17) 

In this paper, we assume a reflectivity 0.9sr  , 0.4TFr  for the sail and the TFSC respectively.16 It is also 

assumed that the TFSC occupies 5% of the total area of the sail, hence 0.05TFA A  . This is estimated to be a 

conservative value, based on previous studies.17 The actual area of the thin film solar cells can be determined once 
the requirements on the thrust are defined, by sizing the power subsystem. 

The analysis will be performed for a set of values of the lightness number 0 , ranging from 0 (pure SEP) to 0.1, 

that represents a future estimation of sail performance. A value of 0.05 can be assumed for a near-term system.29 
 

1 1 1
ˆˆ ˆ φ r θ
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Fig. 3. Frame (B) and solar sail cone and clock angles. 
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Fig. 4. Thrust cone and clock angles. 

B. SEP Thruster 
The thruster is assumed to be steerable and can provide an adjustable thrust force up to a maximum value . 

The direction of the thrust vector T  can be defined through the unit vector , i.e. 
uT

ˆ Tu ˆ TTT u . The relation between 

the thrust and the resulting spacecraft acceleration is therefore: 

 ˆ ˆT T T

T
a

m
 a u Tu  (18) 

Analogously to n , the unit vector  can also be expressed in terms of cone and clock angles ˆ ˆ Tu ,T T  . These 

angles are defined in the same way as for the solar sail (Fig. 4). Therefore, in frame (B): 

  
cos

ˆ sin sin

sin cos

T
B

T T

T T



T 
 

 
   
  

u  (19) 

In the case of the solar sail, the parameterization through cone and clock angle is useful due to the relation of the 
cone angle to the magnitude of the force. In the case of the SEP thrust, the cone and clock angles have no particular 
meaning: the choice is dictated by having the same parameterization for the two parts of the acceleration. 

In this work, a specific impulse of 3000 sspI   is assumed, based on  current ion engine technology (existing 

NSTAR/DS130 or EADS/Astrium RIT-XT). However, values up to 4500 s are expected to be achieved in the near 
future (e.g. BepiColombo’s QinetiQ T6).1 The value of the maximum thrust T  is set to 0.2 N, for a spacecraft with 

1000 kg of initial mass. 
u

III. Shape-Based Approach 
A pole-sitter spacecraft, during the operations phase of its mission, is constantly aligned with the polar axis of 

the Earth. If we neglect precession of the equinoxes and nutation (which are long-term, and thus irrelevant in this 
analysis), the polar axis of the Earth does not change its direction while the Earth is orbiting the Sun. Therefore, in 
the rotating reference frame (A), the same axis rotates with a motion of apparent precession (Fig. 5). Its angular 
velocity is the opposite of that of frame (A), or ω . Therefore the polar axis spans a full conical surface in frame 
(A) every year. The cone half angle is the tilt of the axis relative to the ecliptic, i.e. 23.5 degeq  . Therefore, the 

pole-sitter shall follow the Earth’s polar axis, and describe a 1-year-periodic orbit. 
The equations of motion of the hybrid propulsion spacecraft, in the (A) reference frame, can be found starting 

from (3) and substituting the two accelerations due to the sail (13) and SEP (18): 

    ˆ ˆ2 A A
s T TU a a     r ω r m  u

e

 (20) 

The equations of motion (20) require the additional equation that relates the mass consumption with the thrust 
force. From Newton’s law: 
 TT ma mv    (21) 

where  is the propellant mass flow and v  is the velocity of the exhaust gas. This parameter is commonly 

expressed through the engine specific impulse, viz. 

m e

0e spv I g , being 2
0 9.81 m sg   the gravitational acceleration 

on the surface of the Earth. 

1̂r

T

T
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Fig. 5. Apparent precession of the Earth’s polar axis due to rotation of reference frame (A). The figure 
illustrates the different directions of the axis over one year. 

 
It is convenient to rewrite Eqs. (20) and (21) as a first order system by introducing the state vector 

, so that:  T
mx r v

    ˆ ˆ2 A
s T T

e

U a a

m T v

A

  
          
      

vr

x v ω v m u


 


 (22) 

The dynamics of the spacecraft (22) is to be constrained, to follow the apparent precession of the polar axis, and 
hence maintain the pole-sitter condition. It is assumed that the initial time 0 0t   coincides with the winter solstice, 

and therefore the pole-sitter spacecraft is on the cone at position: 

  
   

 
 

sin cos 1

sin sin

cos

eq

eq

eq

d t t

t d t t

d t

  

 



  
 

  
 
  

r  (23) 

where  is the distance from the centre of the Earth, and is in general a continuous function of time. Without 

loss of generality, due to the symmetry of the problem in the -  plane, the North Pole case is considered in this 

work. 

 d t

x̂ ŷ

Note that in a pure SEP spacecraft, the term  ˆ A
sa m  in system (22) is null, and thus the coupling between the 

equation of the mass and the equations for  is through the acceleration , that is defined as a function of the 

control T through Eq. 

,r v Ta

(21). However, as long as the SEP system can provide the necessary thrust (i.e. the thrust is 
not saturated), then the system (22) can be scaled in mass, without affecting the evolution of the other states. 
Therefore, the optimal solution in terms of    ,tr v t  can be found using a unitary initial mass. The actual 

evolution of the mass over time for a given spacecraft is found multiplying the mass fraction by the initial mass of 
the spacecraft. This means that the initial mass is only a scaling factor for the same equation, and does not affect the 
motion of the spacecraft. Furthermore, if a periodic orbit is considered, and until the propulsion system is able to 
provide the necessary peak thrust, the propellant mass fraction for each orbit period does not depend on the initial 
mass. This is not the case for the hybrid spacecraft: in fact, the spacecraft mass is coupled with the equations of 
motion through the term sa , which depends explicitly on the mass, and the system cannot be scaled. In fact, while 

with SEP the magnitude of the thrust can be varied to compensate for the mass reduction, the magnitude of the thrust 
generated by the sail cannot be controlled independently from its direction. This means that the acceleration 
provided by the sail, for a given clock angle, is higher as the mass decreases, and the propellant mass fraction 
needed for each orbit period is different depending on the actual value of the initial mass in that period. However, 
for the cases under consideration, it was observed that the propellant mass fraction decreases when the spacecraft 
mass decreases. Therefore, it is conservative to assume that the propellant mass fraction for the first orbital period is 
the same for all the other periods. 

x̂

ẑ

ω

ŷ

eq t
Winter 
solstice
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A. Thrust Vector Optimization 
An optimal control problem generally requires a first guess that is accurate enough to allow the optimizer to 

converge quickly and smoothly to a locally optimal solution. In this work, the first guess is generated by using a 
shape-based approach,31 in which a specific orbit for the spacecraft is assigned, and then the controls that enable that 
orbit are obtained from the equations of motion. That is, once the kinematics of the orbit is assigned through the 
position  function of time, find the controls  tr  tu  at each instant of time that enable that orbit. The total 

acceleration needed  can be computed from Eq. a (3): 
 2 U   a r ω r   (24) 

In fact, the right hand side of Eq. (24) is fully determined when  tr  is given. The acceleration can also be 

expressed in modulus, cone and clock angles in the following way. The modulus is simply: 
 2a U   r ω r   (25) 

The cone and clock angles a  and a  can be found rewriting  in frame (B): â

  
1 1 1

cos
ˆˆ ˆ ˆ ˆsin sin

sin cos

a
B

a a

a a


 
 

 
      
  

r θ φ a a  (26) 

From which it can be seen that: 

 

 

   
1

1 1

ˆarccos

ˆ ˆ
arctan ,

sin sin

B
a r

B B

a
a a

a

a a 




 




 
 
 

  (27) 

in which arctan represents the four-quadrant inverse of the tangent function. 
Finally, the magnitude of the thrust force needed (which can be provided by both propulsion systems) is simply 

f ma . Note that if no solar sail is used, then the thrust shall be provided by the SEP system completely, and 

therefore the controls are simply T f ,  T a  , T a  . 

In general, the SEP engine can provide a maximum amount of thrust . If at any time maxT maxF T , then the 

selected orbit cannot be followed with a pure SEP system: either another obit is to be chosen, or an additional 
propulsion system (e.g. sail) is to be used. It can also be noted that the mass of the spacecraft is not constant 
throughout the orbit, but is a function of time, and can be computed knowing the previous control history. 

SEP-only solutions are not optimal for the hybrid spacecraft, in terms of propellant mass consumption, since 
they do not exploit the solar sail. A different approach can be used: since the kinematics is given, and so is the total 
acceleration, the attitude of the solar sail can be found, such that the SEP thrust is minimum at each instant of time. 

The magnitude of the thrust can be expressed as a function of the sail cone and clock angles: 
   ˆ,T sa a   a m  

in which  is known through a (24), and the term  can be computed using Eqs. ˆ
sa m (13), (15), and (17), and depends 

on the sail cone and clock angles, and the spacecraft mass. Therefore, at each point in the trajectory, and for a given 
mass, the sail angles ,   can be determined by solving the NLP problem: 

 
0 2
0 2

arg min ,Ta
 
 

  





 
 

 
 

 
 (28) 

If the mass as a function of time is known, then for each point on a given trajectory, the controls can be 
computed by solving problem (28). Figure 6a shows the surface  ,Ta    for a specified position, velocity and mass 

of the spacecraft. 
It was analytically shown in Ref. 17 that the minimum-thrust solution is such that, in the general case: 

 a    (29) 

and since a  is known through (27), the problem can be reduced to: 

  
0 2

arg min ,T aa
 

  

 
  (30) 
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Fig. 6. At point r = [1.006, 0, 0.0137] AU and v = [0, -0.1781, 0] km/s: (a) SEP acceleration as a function of 
the sail cone and clock angles, for a specific point on a given orbit. (b) Section of the previous surface for the 
optimal value of sail clock angle. 

 
Figure 6b shows the function  ,Ta    for the same case as Fig. 6a. The minimization (30) is solved 

numerically, using an SQP method32 implemented in MATLAB® function fmincon. To prevent the possibility of 
converging to a local minimum, 4 different starting points, spread in the interval  0, 2  are used. 

Once ,  

Ta m

 are found, the other controls can be easily computed: the modulus of the SEP thrust T is simply 

given by ; its direction can be found considering the SEP acceleration vector , that can be 

expressed in frame (B) and then the angles can be found through Eq. 

ˆ
T a a a ms

(27) applied to . Ta

The method that is used here to find the acceleration at each specific point  tr  can be extended to find entire 

orbits. This will be the subject of the following subsection. 

B. Extension to Periodic Orbits 
Here one-year periodic pole-sitter orbits are sought. The initial mass of the spacecraft , at time 0m 0 0t  , the 

winter solstice, is assumed to be 1000 kg. Note that this mass in general is not the launch mass, but the mass 
remaining after performing the transfer and injection into the pole-sitter orbit. This part of the mission is not subject 
of this paper. The controls at successive instants of time, together with the mass consumption, can be approximated 
by discretizing the trajectory into several points, each of which is spaced by a time interval . At each point, 
controls can be estimated through 

t
(28). Once the thrust is known, it can be can assumed that this level of thrust 

remains almost constant for an interval . Therefore the differential equation for the mass in system t (22) can be 
integrated from ith time instant  to the following one it 1i it t t    : 

 1i i
e

T
m m

v t    (31) 

Algorithm 1 is used to compute the entire one-year periodic orbit. The final time  coincides with ft 2  in the 

non-dimensional time frame. 

1. Constant Distance 
Firstly, the analysis with a pole-sitter orbit that keeps a constant distance from the Earth’s pole is considered 

(Fig. 7). The kinematics of this trajectory is simply: 

  
 sin cos 1

sin sin

cos

eq

eq

eq

d t

t d t

d

  

 



  
 

  
 
 

r  (32) 
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Algorithm 1. Shape-based approach for computing controls. 
 1: Set   0 0;t t m m 
 3: Do  
 4:  Given      , ,t t tr r r   from kinematics, 

   find total acceleration using (25) and (27) 
 5:  Find ,    with (29) and solving problem (30) 

 5:  Find other controls , ,T TT    

 6:  Update mass with (31): em m T t v     

 7:  Update time: t t t   
 8: While ft t  

 

d
eq

t

0 0t 

x̂

 
Fig. 7. The pole-sitter orbit with constant distance from the Earth. 
 
and the derivatives are: 

    

2

2

sin cossin sin

sin cos ; sin sin

0 0

eqeq

eq eq

d td t

t d t t d t

    

     

  
  

     
  

    

r r   (33) 

Using Algorithm 1, the optimal hybrid solution for the constant-distance pole-sitter is obtained. Figure 8 shows 
the trajectory of the spacecraft over one year, superimposed on the cone described by the Earth’s polar axis. The 
bold arrows are proportional to the total local acceleration from Eq. (24), that needs to be counterbalanced by the 
total thrust, for maintaining the orbit. The other vector fields refer to the reference case 0 0.05  . The gray arrows 

represent the attitude of the solar sail, . Their direction does not exactly match the direction of the force produced 
by the solar sail (black arrows in figure), due to the non-ideal sail that was considered. Finally, the black, non-bold 
arrows represent the SEP thrust. It can be noted that the gravitational acceleration is mostly directed towards 

n̂

ˆz , 
therefore the resulting thrust shall be in the opposite direction. The solar sail thrust has a component in , but it is 
accompanied by a significant component along 

ˆz
ˆx , i.e. facing away from the Sun. The SEP is therefore providing 

the missing component in , but also counteracting the residual  component. ˆz ŷ

Figure 9 shows the magnitude of the acceleration provided by the sail (continuous lines) and SEP (dotted lines), 
for different values of 0 : the solid lines refer to 0 0  , i.e. a pure SEP system with no sail, the long-dashed lines 

to 0 0.05   and the short-dashed lines to 0 0.1  . The bold circled line is the magnitude of the gravitational 

forces. In the case of pure SEP, the SEP acceleration is obviously the same as the gravitational acceleration. In the 
hybrid case, clearly the SEP acceleration is lower for higher values of 0 . Additionally, from the figure it is possible 

to see that higher acceleration is required from SEP around the summer solstice, roughly in the interval 

 100, 250  dt . 

Figure 10 and Fig. 11 show respectively the cone and clock angles of both the sail and the SEP acceleration. In 
the case 0 0  , the sail cone has no meaning. The trend of the clock angles of both the sail and the SEP is the same, 

and does not depend on the spacecraft mass or initial lightness number. Their shape is simply sinusoidal during one 
year: therefore, these two controls will not be shown in the rest of this work. 
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Fig. 8. Trajectory and thrust vectors for β0 = 0.05 over one year on a flat orbit d = 0.01 AU. 
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Fig. 9. Acceleration of the sail (non-dotted lines) 
and SEP (dotted lines) for different values of β0, over 
one year on a flat orbit d = 0.01 AU. 

Fig. 10. Cone angles of sail (non-dotted lines) and 
SEP thrust (dotted lines) for different values of β0, 
over one year on a flat orbit d = 0.01 AU. The angles 
have the same value point-wise; hence all the lines 
are overlapped. 

 
Figure 12 shows the spacecraft mass change. In particular the figure shows the mass gain of the hybrid 

propulsion with respect to the pure SEP spacecraft. 
A parametric analysis can be done, for all the orbits maintaining constant distance from the Earth, as a function 

of the distance itself. Figure 13 shows the propellant mass fraction of the spacecraft in a constant-distance pole-sitter 
orbit, for one year, as a function of the distance of the orbit, for three values of 0 . These orbits become extremely 

expensive when the distance from the Earth decreases, and the Earth’s gravitational attraction becomes predominant 
with respect to the other forces of the CR3BP. This result matches what was found in Ref. 24. It is also interesting to 
note that the propellant consumption has a minimum for a value of 0.017 Ad U . 

Finally, Fig. 14 shows the propellant mass fraction needed for a spacecraft of 1000 kg to maintain an orbit at 
 from the Earth. This graph is relevant because it highlights that a consistent gain in propellant mass is 

obtained by adding a small sail to the pure SEP spacecraft: in fact, the slope of the curve is highest for small values 
of 0

0.015 AUd 

 . As ightness number increases towards very high values, the gain in propellant mass for a given increase 

of 0

the l

  becom s less. However, this graph justifies the research on the hybrid spacecraft, seen as a pure SEP system 

with a small auxiliary sail. The trend of this graph is the same for different values of d. The effect of the sail on the 
total mass budget of the sail will be discussed later. 

e
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Fig. 11. Sail and SEP thrust clock angles for 
different values of β0, over one year on a flat orbit 
d = 0.01 AU. The angles have the same value point-
wise; hence all the lines are overlapped. 

Fig. 12. Mass trend for different values of β0, over 
one year on a flat orbit d = 0.01 AU. 
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Fig. 13. Propellant mass fraction needed for one year 
on a flat, circular orbit, as a function of the distance 
d from Earth (initial spacecraft mass m0 = 1000 kg). 

Fig. 14. Propellant mass fraction needed for one year 
on a flat, circular orbit (d = 0.015 AU), as a function 
of the sail lightness number β0 (initial spacecraft 
mass m0 = 1000 kg). 

 
Note that even if a higher 0  sail produces a higher acceleration sa , its direction is still constrained and related 

to the cone angle, and in general it is not aligned to the total acceleration vector a  (see vectors in Fig. 8). Therefore, 
a higher sail acceleration is in general accompanied by a greater acceleration component in an unwanted direction, 
which shall be compensated by using the thruster. 

2. Tilted Orbits 
Different families of pole-sitter orbits, which reduce propellant mass, can be obtained by relaxing the constraint 

of a constant distance from the Earth. It is possible to reduce the thrust and better exploit the capabilities of the solar 
sail by tilting the orbit such that the required acceleration is towards the Sun, and thus it can be counterbalanced 
more efficiently by the solar sail. 

A different set of shapes, in which we introduce as parameters the distance from the Earth at winter solstice  

and at summer solstice  (
1d

2d Fig. 15), will now be considered. The  coordinate is varied between these two values 

with a sinusoidal law: 

ẑ
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If for example  and  are selected, the orbit in 1 0.01 AUd  2 0.015 AUd  Fig. 16 is obtained. From the vector 

fields of the forces, it can be seen that during summer the alignment of the gravitational forces is more favorable. 
The plot of the accelerations as function of time (Fig. 17) confirms this: while the sail provides more or less a 

constant acceleration through the year, the SEP acceleration drops considerably around summer. This results in 
significant saving in propellant mass. 

Figure 18 shows the cone angles, while Fig. 19 represents the mass as a function of time. This is to be compared 
to Fig. 12: the mass saving due to the tilting of the orbit is evident, although the average distance of the spacecraft 
from the Earth during an orbit is higher. It is worth noting that the propellant mass saving is not only due to the 
increased distance of the spacecraft during summer, but also to the favorable alignment of the forces. In fact, tilting 
the orbit in the other direction (i.e.  and 1 0.015 AUd  2 0.01 AUd  ) produces a much worse result in terms of 

propellant consumption. Therefore it can be concluded that, in general, it is cheaper to observe the North Pole from 
a shorter distance in winter than in summer. 

 

1d
eq

2d

0 0t 

x̂

 
Fig. 15. Definition of d1 and d2, and origin for the tilted, shape-based orbits. 
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Fig. 16. Trajectory and thrust vectors for β0 = 0.05 
over one year on a tilted orbit d1 = 0.01 AU, d2 = 
0.015 AU. 

Fig. 17. Acceleration of the sail (non-dotted lines) 
and SEP (dotted lines) for different values of β0, over 
one year on a tilted orbit d1 = 0.01 AU, d2 = 0.015 AU.
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Fig. 18. Sail and SEP cone angles for different values 
of β0, over one year on a tilted orbit d1 = 0.01 AU, d2 = 
0.015 AU. 

Fig. 19. Mass trend for different values of β0, over 
one year on a tilted orbit d1 = 0.01 AU, d2 = 0.015 AU.

 

3. Remarks 
The solutions generated with the proposed shape-based method are optimal, in the sense that the thrust to 

maintain a given orbit is minimized at each instant of time. Therefore, for the specific paths considered, the control 
profile that was found is the one that allows minimum propellant consumption. If, for example, a payload requires a 
constant distance from the Earth throughout the year, then the orbit is defined. Note that in the case where the 
kinematics is fully determined, it was verified by several numerical experiments that Algorithm 1 provides solutions 
that are extremely similar to those that can be found by solving an optimal control problem, minimizing the 
propellant mass, and keeping the orbit fixed. However, if there is no constraint or requirement on the orbit, but for 
example only a range of distance is specified (depending for example on the instrument requirements) then the use a 
priori of a specific orbit cannot be justified. 

It was shown that different orbits could affect the amount of thrust needed at each instant of time, and thus the 
propellant mass over one year. 

Due to the constraint of the pole-sitter spacecraft, all possible orbits can be described through the distance from 
the Earth as a function of time during one year,  d t . Among these, there shall be at least one particular 1-year-

periodic orbit, for any given value of 0 , that minimizes propellant mass while maintaining the spacecraft above the 

pole. 
As seen in Fig. 13, the propellant mass is not monotonically increasing with the distance from the Earth, but it 

has a maximum. Although the figure refers to the case of flat orbits, the same trend is seen for tilted orbits. This fact 
indicates that orbits do not become indefinitely cheap while increasing the distance. Therefore, it is expected to find 
optimal orbits without limiting the maximum distance from Earth. 

If the kinematics of the orbit is not known a priori (that is equivalent to say that the distance function  d t  is 

not given), then the semi-analytical procedure used so far is not applicable, and the solution, that includes 
determining the optimal trajectory, is found by solving an optimal control problem. The optimal control problem is 
one of finding the control history of a given dynamical system, such as to optimize a given cost function, while 
satisfying the dynamics itself and possibly other constraints, which can include initial/final conditions. 

In the following section, the solution will be found through a direct method. All direct methods need to be 
initialized with an initial (or first-guess) solution, which is close enough to the optimal one to guarantee 
convergence; orbits and control histories found with the shape-based method will be used for this purpose. 

IV. Pseudo-Spectral Methods 
In general, an optimal control problem can be defined in the following way. Given a dynamical system, 

described by a set of differential equations for the states x , from initial time  to final time , 0t ft
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        0, , , ,xn
ft t t t t t t     x f x u   (36)

  

the problem is to find the control law , such as to minimize the cost function:   unt u 

      
0

0 0, , , , , d
ft

f f t
J t t L t t t t      x x x u . (37) 

The cost function is split into two addends. The first one, the endpoint cost, is a function of the initial and final 

states and time only. The second, under the integral and a function of time,     , ,L t t tx u , is the Lagrangian of 

the system. The initial and final time can also be free, as optimization parameters. Additional non-linear constraints 
can also be introduced, of the type: 
  , , 0t c x u  (38) 

These constraints include path constraints, bounds on the states, the controls, and feasible intervals for the initial 
and final states. 

Direct methods for optimal control problems find the solution of an optimal control problem by discretizing the 
time interval into a finite number of points (collocation points or nodes) and then transcribing the finite-dimensional 
problem into a constrained non-linear programming (NLP) problem that can be solved with one of the several 
methods available in literature. Therefore the controls and states over time are completely described by a finite set of 
points, and the continuous time history is reconstructed from the collocation points through interpolating functions. 
In this work, pseudo-spectral methods will be used: Pseudo-spectral methods have been used to tackle partial 
differential equations33 and have been applied in many areas of science, engineering and modeling. More recently, 
starting from about 1990, they have been also used to solve optimal control problems.34-35 

They are based on Legendre or Chebyshev polynomials for interpolation and approximation of the derivatives 
and integrals. 

The advantage of using pseudo-spectral methods for approximating a continuous and smooth function is that the 
derivative of the function at the collocation points and the integral of the function can be computed through matrix 
multiplication only,36 and do not need to be approximated with finite differences. This comes into use for computing 
the derivatives of the states in Eq. (36) and the integral of the Lagrangian of the cost function in Eq. (37). 

A particular implementation of pseudo-spectral methods was selected for this work. The tool, named PSOPT, 
was created and coded in C++ by Becerra36 and is free and open source. PSOPT can deal with endpoint constraints, 
path constraints, and interior point constraints. Bounds on the states and controls can be enforced, as well as 
intervals for initial and final states. Furthermore, it makes use of the ADOL-C library for the automatic 
differentiation of C++ code. It allows the machine to compute automatically the gradients and sparse Jacobians of 
the user-supplied dynamics and constraint functions required by PSOPT. The NLP problem is solved through 
IPOPT,37 an open source C++ implementation of an interior point method for large scale problems. 

A. Pole-Sitter Optimal Control Problem 
The problem is now to find optimal periodic orbits with respect to a given cost function, specifically to minimize 

the propellant consumption, or maximize the final mass. 
Given that a pole-sitter orbit is fully determined through the function  d t , a possible approach is to obtain an 

equation for the dynamics of  d t . If the position vector is expressed through Eq. (23), then the three-component 

dynamics for  tr  (20) can be transformed into three scalar equations, all involving      , ,d t d t d t  . One of these 

equations can be used for describing the dynamics of d, while the other two represent differential constraints on the 
control, necessary for meeting the pole-sitter condition (i.e. maintain the spacecraft above the pole). In this work, 
rather than using this approach, the dynamics of  tr  (22) are used, and then the pole-sitter constraints are enforced 

explicitly, to ensure that  is compatible with Eq. tr  (23). Therefore, the dynamical system is the one in Eq. (22), 

and the state vector for the problem is: 

 
T

x y z x y zr r r v v v m   x , 

with the following bounds, in non-dimensional units: 
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It should be noted that some bounds are not strictly necessary for finding the optimal solution: for example, both 
the velocity and the mass states are automatically limited due to the dynamics of the problem. Nevertheless, bounds 
for the states and controls are necessary, and used by PSOPT to scale the problem. The position, instead, can be 
limited to a maximum distance from the Earth , for example as a requirement of the payload. maxd

As the problem will be solved for one orbital period, initial and final times are fixed as: 
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The following fixed initial states are considered: 
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The first condition, together with proper bounds on ,x zr r , guarantees that the starting point is at the winter 

solstice. The conditions on the velocity represent the fact that the orbit shall be symmetric with respect to the -  
plane. Other initial states are free within the state bounds. Therefore, the optimizer is allowed to move the initial 
point on the orbit, specifically raise or lower it, as well as the initial velocity. 

x̂ ẑ

The periodicity of the solution is set requiring that the final states, except the mass, are the same as the 
corresponding initial states: 
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Note that, despite the choice of the winter solstice as the initial point, since the orbit is periodic, it does not imply 
that the injection from transfer should necessarily happen in this point. 

Since the spacecraft has to stay along the polar axis of the Earth at each time , two path constraints are 

introduced, such that: 
0t t
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The former defines the angular position of the spacecraft around the Earth in the -  plane, while the latter 

constrains the distance of the spacecraft measured from an axis passing from the centre of the Earth and parallel to 
 (see 

x̂ ŷ

ẑ Fig. 20). 
Controls are transformed into Cartesian coordinates, to prevent problems with ambiguity and periodicity of 

angular variables, which can arise (see Ref. 38, pp. 140). Therefore, the thrust is described through its Cartesian 

components along , respectively 1 1 1
ˆˆ , ,r θ φ̂

11 1
, ,rT T T 

n̂

 The attitude of the solar sail is analogously described through 

the components in the same frame of the unit vector . Therefore the vector of controls is: 

 
1 1 1 1 1 1

T

r rn n n T T T      u  
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Fig. 20. Origin of time and angular velocity of the pole-sitter. 

 
Bounds for the controls are defined as: 
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The use of Cartesian components forces the use of additional path constraints, for limiting the magnitude of each 
vector. The norm of the SEP thrust is in fact limited by the capabilities of the engine: 

 
1 1 1

2 2 2
r uT T T T     

Concerning the attitude of the sail, the three components 
1 1 1
, ,rn n n   are sufficient to determine the direction of 

, and its magnitude is not relevant. Even though a path constraint is enforced, to guarantee the uniqueness of the 
solution: 
n

 
1 1 1

2 2 2 1rn n n    . 

Different cost functions will be used and will be specified in the relevant subsection. 

B. Results 
The optimized solutions presented here are for the three values of 0 0, 0.05, 0.1  . 

The following results use 60 collocation points in the 1 year mission duration. It was assessed that a higher 
number of points did not result in any significant change in the states or controls history. The convergence of 
PSOPT is easier and faster using a small number of points: therefore, all the following solutions were found by 
iteratively increasing the number of points, from 20 to 60, and using the optimal solution found at one iteration as a 
first guess for the following one. 

The following sub-section will present optimal orbits that minimize the propellant consumption of the spacecraft 
over one period, with no constraints on the spacecraft distance from the Earth. In the following, instead, a trade-off 
will be presented, showing the additional propellant needed to satisfy given constraints on the distance. 

1. Minimum Propellant Consumption 
In this section, propellant consumption will be minimized; therefore the cost function is simply: 

  f fJ m m t     

that is, to maximize the final mass after one period, or one year. Note that linear minimum-fuel problems, with 
constrained control magnitude, usually result in a bang-off-bang control (see Ref. 39, pp. 298-307). In this case, such 
a control is not expected due to the path constraints on the dynamics: in general, a continuous control is needed to 
maintain a pole-sitter orbit. Even if a limitation on the maximum magnitude of the thrust is taken into account, the 
SEP thrust law does not show an on-off structure. However, we will show that the SEP system could be switched off 
in some arcs, if the solar sail is sufficient to maintain the pole-sitter condition. 

In this section constraints are not enforced on the distance of the spacecraft from the Earth. The value  was 

set to the rather high value of 0.1 AU. The aim is to find the cheapest orbits in terms of propellant consumption. 
maxd

Figure 21 shows the three different optimal trajectories, obtained with PSOPT, for each value of 0 , and Fig. 22 

shows the distance of the spacecraft form the Earth. The first point to note is that the pure SEP spacecraft would 
optimally follow an orbit that is symmetric in summer and winter. On the other hand, the optimal orbits gets closer 
to the Earth in winter and farther in summer, as the lightness number of the solar sail increases. The distance can 
even double from winter to summer for a solar sail with a lightness number of 0.1. 

x̂

2r
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Fig. 21. Optimal hybrid pole-sitter orbits, 
minimizing the propellant mass over one period, for 
three different values of β0, during one year. 

Fig. 22. Distance from Earth centre (d) for three 
different values of β0, during one year. 

 
Figure 23 shows the acceleration provided by the solar sail and the SEP system. Considering the pure SEP case 

in the analysis, two thrust regions can be identified: one across the summer solstice and one across the winter 
solstice. Due to the selected time-frame, starting at the winter solstice, the latter region is split in the plot. In these 
two regions the SEP acceleration is almost constant. The two regions are separated by two short arcs, in the autumn 
and spring equinoxes, in which the thrust becomes very low, and the spacecraft motion along  is inverted: the 
instant with lowest thrust happens at the maximum distance from Earth (compare with 

ẑ
Fig. 22). 

If a solar sail is added (see the case 0 0.05   in Fig. 23), the SEP acceleration required in the two thrust arcs 

decreases, and thrust region around the summer solstice becomes shorter, while two non-thrusted arcs expand, 
increasing the time when the thruster is off, and the solar sail is almost sufficient to maintain the spacecraft orbit. 

Eventually, for a suitably large solar sail ( 0 0.1  ), the thrust region around the summer solstice disappears, 

while the two ballistic arcs merge: becoming only one, lasting from spring to autumn approximately. Hence the 
tilting of the orbit can be explained in the following way: having the spacecraft high in summer and a low in winter 
allows the orbit to exploit, for a considerable amount of time, the solar sail and the natural forces only to drive the 
spacecraft back to the winter solstice point and close the orbit. 

The mass as a function of time is represented in Fig. 24. In this figure the substantial saving in propellant that is 
given by a relatively small sail is evident: for a 1-year orbit, the propellant mass decreases from 158 kg (for the pure 
SEP) to 97 kg ( 0 0.05  ). Confirming the result found before (see Fig. 13), a reduction of propellant mass is 

obtained by adding a relatively small sail. However, the saving in propellant mass is less than proportional to the 
lightness number. 

Figure 25 shows the angle between the solar sail normal and the SEP thrust. The purpose of this plot is twofold. 
The first is to show that, throughout the whole mission, the required thrust is never lying in the plane of the solar 
sail. Thrusting along the sail would pose severe problems due to exhaust gases impinging on the sail itself. The 
second aim is to show that the rotation of the thrust vector with respect to the sail is limited. If it is assumed that the 
solar sail is fixed with the spacecraft, then its orientation can be changed by changing the attitude of the spacecraft. 
Figure 25 shows that the SEP thruster cannot be fixed with the spacecraft, as the thrust direction needs to vary; 
instead, it shall be mounted on a gimbal. The rotation needed is less than 2 degrees, in the worst case ( 0 0.1  ), 

hence a simple mechanism can be sufficient to guarantee the required thruster pointing. 
Finally, Table 1 summarizes some features of the three optimal orbits (for each considered value of 0 ) that 

were designed. 
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Fig. 23. Acceleration of the sail (non-dotted lines) 
and SEP (dotted lines) for three different values of β0, 
during one year. 

Fig. 24. Mass as a function of time, for three 
different values of β0, during one year. 
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Fig. 25. Angle between the thrust vector uT with respect to the solar sail normal n, for three different values 
of β0, during one year. 

 
Table 1. Summary of characteristics of unconstrained optimal orbits for three different values of sail lightness 
number. Time frame is one year; initial mass is m0 = 1000 kg. 

0   min
t

d t , AU  max
t

d t , AU fm , kg 0propm m  maxT , N 

0.0 0.015675 0.020332 843.430417 0.156570 0.180648 
0.05 0.013116 0.023422 901.896219 0.098104 0.141085 
0.1 0.011896 0.028363 925.192867 0.074807 0.134256 

 

2. Orbit Performance Trade-off 
In this subsection the trade-off between an orbit with a particular feature, and the additional propellant mass 

needed to maintain it is considered. 
A possible, important requirement of the pole-sitter spacecraft could be the maximum distance from the Earth. It 

has been shown that fuel-optimal orbits vary their distance quite consistently, and this can be an issue, for example, 
for guaranteeing a sufficient resolution for observation of the Earth. Therefore families of optimal orbits have been 
designed, constraining the maximum distance of the spacecraft, by gradually decreasing the value . maxd
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Table 2 presents the results of the optimal orbits for different values of  and maxd 0 . Note that for values of  

lower than those considered in the table, the orbit is substantially flat, and therefore the optimal constrained solution 
coincides with the flat orbit found with the shape-based approach, and the value of the final mass after one year is 
the one represented in 

maxd

Fig. 13. Note that the thrust peak value does not change significantly as the orbit gets closer to 
the Earth, but the propellant needed is nevertheless more due to a higher value of the thrust required throughout the 
whole orbit. This is due to the fact that the peak of thrust happens at the beginning of the orbit, at the winter solstice, 
and when the spacecraft mass is highest. The distance of the orbits from Earth at the winter solstice is almost the 
same as long as , and so is the thrust needed at that point. An example of the families of orbits that 

are obtained are plotted in 

0.013 AUmaxd 
Fig. 26, for 0 0.05  . 

 
Table 2. Summary of optimal orbits (minimum propellant mass consumption over one year) obtained 
constraining the maximum distance from the Earth to dmax. Initial mass is m0 = 1000 kg. 

0  maxd , AU  min
t

d t , AU  max
t

d t , AU fm , kg 0propm m  maxT , N 

0.018 0.015616 0.018 842.666099 0.157334 0.174290 
0.017 0.015583 0.017 841.886048 0.158114 0.170876 
0.016 0.015466 0.016 840.580282 0.159420 0.166309 
0.015 0.014988 0.015 838.280770 0.161719 0.162189 
0.014 0.013999 0.014 834.122246 0.165878 0.167615 
0.013 0.013000 0.013 827.345636 0.172654 0.175659 

0.0 

0.012 0.011999 0.012 817.098782 0.182901 0.187183 
0.018 0.013179 0.018 898.507259 0.101493 0.142394 
0.017 0.013196 0.017 896.688888 0.103311 0.138714 
0.016 0.013201 0.016 894.203213 0.105797 0.137004 
0.015 0.013183 0.015 890.818185 0.109182 0.134783 
0.014 0.013105 0.014 886.186387 0.113814 0.132355 
0.013 0.012838  0.013 879.749327 0.120251 0.129667 

0.05 

0.012 0.012000 0.012 870.546037 0.129454 0.133296 
0.018 0.012012 0.018 916.731609 0.083268 0.126068 
0.017 0.012025 0.017 914.433408 0.085567 0.124981 
0.016 0.012036 0.016 911.558363 0.088442 0.122102 
0.015 0.012037 0.015 907.916377 0.092084 0.120447 
0.014 0.012020 0.014 903.226895 0.096773 0.119052 
0.013 0.011952 0.013 897.070392 0.102930 0.117095 

0.1 

0.012 0.011749 0.012 888.767765 0.111232 0.114955 
 

 
Fig. 26. A family of optimal orbits, constrained to several values of dmax, for β0 = 0.05. 
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Another possible requirement for the pole-sitter spacecraft payload could be to maintain a constant or quasi-
constant distance from the Earth. This can be useful for a camera with a fixed focal length, in which the field of 
view cannot be varied, and thus a constant distance from the Earth is desirable such that the instrument can be 
designed for that distance. It was shown already that if the orbit is flat, then the shape-based approach can be used to 
compute the optimal controls, and minimize the propellant mass. In this section, however, a trade-off between the 
flatness of the orbit and the additional propellant mass required will be shown. Furthermore, it is assumed that there 
is no particular requirement on the maximum distance . To achieve this, in the cost function a weighed penalty 

that considers the movement of the spacecraft along  is introduced. If it is noted that a flat orbit is the one in which 
the velocity along  is null during the whole orbit, a possible choice of the cost function could be: 

maxd

ẑ
ẑ

 
2

2

0

d
2f

w
zJ m v




   t . (39) 

By varying the weight w, a trade-off of propellant mass against a low average of the spacecraft velocity along  
is possible. Note that the case  coincides with the optimization of the propellant mass only. 

ẑ
0w  Table 3 shows a 

summary of the characteristics of the optimal orbits found using the cost function in Eq. (39), for the three different 
values of 0  and for several values of the weight w. These values have been determined by trial and error, and 

considering the relative order of magnitude of the two addends in the cost function (in non-dimensional units). As 
expected, the orbits flatten at the cost of some additional propellant mass. Note that the additional propellant mass 
needed to flatten the orbit, in the case of pure SEP, is only of order 2 kg; instead, the cost of flattening the orbit 
increases when a hybrid sail is considered: for example, in the case 0 0.1  , a flat orbit costs about 16 kg more 

than the optimal orbit. However, a flat orbit at optimal distance with 0 0.1   is cheaper to maintain than the 

optimal orbit with 0 0.05  . For values of w higher that those presented in the table, the orbit is substantially flat, 

stabilizing to a distance of 0.017, 0.0175, 0.0177 AU for 0 0, 0.05, 0.1   respectively. These values represent the 

optimal distance for a flat pole-sitter orbit, as a function of 0 , and coincide with the minimum of the curves plotted 

in Fig. 13. 
 

Table 3. Summary of optimal orbits obtained minimizing a weighed sum of propellant mass and velocity in z. 
Different values of the weight w are considered. Initial mass is m0 = 1000 kg. 

0  w   min
t

d t , AU  max
t

d t , AU fm , kg 0propm m  maxT , N 

0 0.015675 0.020333 843.430417 0.156570 0.180668 
155 10  0.016516 0.017801 842.199379 0.157801 0.166281 
145 10



 0.016917 0.017099 841.264629 0.158735 0.176469 
131 10
13

 0.016953 0.017047 841.174169 0.158826 0.158635 
0.0 

2 10  0.016975 0.017022 841.125662 0.158874 0.160165 
0 0.013116 0.023416 901.894908 0.098105 0.141267 

155 10
14

 0.014744 0.019960 899.638660 0.100361 0.134823 

5 10
13

 0.016982 0.017942 894.916402 0.105084 0.134742 

1 10
13

 0.017262 0.017763 894.270074 0.105730 0.135284 
0.05 

2 10  0.017411 0.017668 893.914791 0.106085 0.135428 
0 0.011900 0.028253 925.148293 0.074852 0.134605 

155 10
14

 0.013981 0.021394 919.943583 0.080056 0.122209 

5 10
13

 0.017031 0.018251 911.326314 0.088674 0.126967 

1 10
13

 0.017393 0.018022 910.306349 0.089694 0.128146 
0.1 

2 10  0.017588 0.017907 909.759657 0.090240 0.129009 
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Fig. 27. A family of optimal orbits, for different values of the cost function weight w, and β0 = 0.05. 

V. Mass Budget 
So far, this paper has presented the performance of several different optimal pole-sitter orbits, showing the 

advantages in terms of propellant mass (or propellant mass fraction) of the hybrid spacecraft with respect to the pure 
SEP system. However, the hybrid spacecraft is a more complex system, mainly due to the presence of the solar sail 
and the need to have a steerable SEP thrust vector with respect to the sail, which is assumed to be fixed with the 
main spacecraft bus. Due to the additional subsystem mass, it is interesting to assess whether the hybrid system 
allows a greater payload mass , with the same initial spacecraft mass . A full analysis of the system mass 

budget is beyond the scopes of this paper; however a few design points will be presented, to show the feasibility and 
applicability of the hybrid spacecraft. 

plm 0m

For sake of comparison, the technological assumptions are based on what was chosen in Ref. 17. In that work, 
the authors computed the requirements for a spacecraft to be stationary in the Sun-Earth rotation frame, placed at 
0.01831 AU above the North Pole at the summer solstice (hence above the Lagrange point L1), a solar sail with 

0 0.03  , a payload mass of 100 kg, a SEP specific impulse of 3200 s, and a 5 year mission timeframe. The same 

specific impulse is used in this section. 
For a preliminary mass budget, the total spacecraft mass can be split as: 

  0 prop tank thrusters SEP gimbal s TF plm m m n m m m m m        (40) 

where  is the propellant mass necessary for a given mission duration , and is computed solving the 

optimal control problem described before for an estimated initial mass 0,

propm missiont

guem  orbit is optimized for one period, 

and the same orbit is used throughout the whole mission, for the remaining periods. The mass of the tanks is 
;40 the number of thrusters is 

ss . The

0.1tank propm m 2thrustersn  , for redundancy and such that a second thruster can be used 

after the performance of the first has degraded; the mass of the engine is ,SEP maxPSEP SEPm k , with 20kg kWSEPk   

(NASA solar electric propulsion technology application readiness class engine).30 The maximum power  

required by the SEP subsystem is computed as a function of the maximum thrust  required during the mission, 

in the following way: 

,SEP maxP

maxT

, 2SEP max max e SEPP T v  , where 0.7PSE   is the efficiency of converting electrical energy.41 

The upper limit on the SEP thrust  is not considered here, as it is assumed that the size and performance of the 

engine scales up together with the mass of the spacecraft. For the hybrid spacecraft, 
uT

0.3gimbalm  SEPm ;40 for the pure 

SEP, instead, . The total sail area (highly reflective surface + TFSC) can be computed starting from the 

assumed values of 

0gimbal 

0

m

  and , from Eq. 0m (9), as 0 0A m   . The mass of the thin film solar cells is proportional 

to their area: TF TF TFm A , where 2100 g mTFSC  (Ref. 16). The area was conservatively assumed to be 5% of 

the total area of the sail.17 Here, a more precise value can be estimated, as a function of the maximum power. In 
particular, for the pure SEP spacecraft, the solar panels are usually kept perpendicular to the Sun vector, and 
therefore the area of TSFC necessary to guarantee the required power is 

 

,SEP mA PTF ax TFW , with 0.05TF   due 
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to the relatively low efficiency of the thin film, and energy flux density of the Sun 21367 W mW  , considered 

constant at 1 AU. In the hybrid spacecraft, instead, the TFSC is part of the reflective surface, and therefore their 
pitch with respect to the Sun vector is given by the clock angle of the sail 

maxT   at the instant when the 

maximum thrust is required. Consequently, in the hybrid case, the area of the TFSC shall be augmented according to 

, cos
maxTF SEP max TF TA P W  . The area of the sail is simply s TFA A A  , and its mass is s s sm A . s , the mass 

per unit area of the sail, or sail loading, is a critical parameter that depends on the solar sail technology. Currently, 
realistic values are on the order of 25-30 g/m2 (Ref. 18), but near-term technological developments should allow 
values of 10 g/m2 42. Ultra-thin (around 2 μm of thickness) sails are expected in the mid- to long-term timeframe 43: 
they can lead, for large sails, to loadings of the order of 5 g/m2. 

Eq. (41) can be solved, for example for , having assigned a payload mass, with an iterative method. 0m

100

Table 4 

presents two pole-sitter mission scenarios: a short mission (5 years), and a long mission (8 years). In both the cases, 
the payload mass to be carried is , to allow comparison with previous work.17 Three different 

spacecraft were considered, for each scenario: a pure SEP, a near-term hybrid sail (sail loading of 7.5 g/m2) and a 
mid- to long-term hybrid sail (5 g/m2). The value of 

 kgplm 

0  was consequently selected for each case, to minimize the 

initial mass. 
For 5 years, the pure SEP spacecraft weighs about 434 kg at launch: this value is comparable to the static 

equilibrium case above L1 that was presented in Ref. 17. For the 5-year mission, the mid-term sail is not convenient, 
as the launch mass would be slightly higher (459 kg). A major improvement is found considering a lower sail 
loading, as in the long-term spacecraft: in this case, the initial mass drops to 384 kg. 

It is important to underline here that the saving in initial mass is not as important as what was found for the static 
equilibrium case, in which the initial mass for the hybrid spacecraft (with a sail loading of 10 g/m2) dropped to 288 
kg.17 This is due to the fact that at the summer solstice the total acceleration to be counterbalanced by the SEP and 
sail is minimum, with respect to that in other positions of the polar cone (see for example Fig. 17, in which the 
position of the static equilibrium spacecraft is at 182.5 dt  ). Therefore, at that point, the contribution of the sail is 
maximized, and staying stationary in this position exploits this advantage during the whole mission. It can be 
deduced that following the North Pole of the Earth results in a more expensive trajectory, in terms of propellant 
mass, with respect to a stationary spacecraft in an equivalent equilibrium position above the L1 Lagrange point. 

However, the improvement of the hybrid spacecraft with respect to the pure SEP spacecraft becomes important 
considering the longer 8-year mission. In this case, for pure SEP, a 2418 kg spacecraft and a maximum thrust of 
0.42 N is required. Instead, adding a mid-term sail brings these values down to 1924 kg and 0.3 N. As expected, 
further improvements are obtained for the long-term spacecraft. 

 
Table 4. Mass budget for different mission durations and values of sail lightness number and sail loading for 
mpl = 100 kg. 

Spacecraft Pure SEP 
Mid-term 

hybrid 
Long-term 

hybrid 
Pure SEP 

Mid-term 
hybrid 

Long-term 
hybrid 

missiont , y 5 5 5 8 8 8 

s , g/m2 - 7.5 5 - 7.5 5 

0  0 0.02 0.03 0 0.02 0.04 

0m , kg 434.6450 459.0042 384.2920 2418.7 1923.9 971.4498 

plm , kg 100 100 100 100 100 100 

propm , kg 239.8382 206.8880 161.1140 1749.6 1157.3 522.8407 

sm , kg - 44.7396 37.5298 - 187.5263 126.6162 

TFSCm , kg 2.4990 3.4770 2.9178 13.9068 14.5739 7.4148 

sA , m2 - 5965.3 7505.9 - 25003 25323 

TFSCA , m2 24.9905 34.7702 29.1776 139.0679 145.7395 74.1482 

maxT , N 0.0762 0.0714 0.0571 0.4239 0.2991 0.1392 
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Furthermore, it was found that the pure SEP spacecraft option is not feasible if the mission time is longer than 
about 8.8 years, and therefore for longer missions, the hybrid spacecraft is the only option. For example, the long-
term hybrid can carry the same payload for 10 years with an initial mass of about 4000 kg. 

It is interesting to note that, despite the benefit of the solar sail to the pole-sitter spacecraft, it is not as good as 
the benefit that the static equilibrium spacecraft above L1 receives.17 However, it was shown that the hybrid 
spacecraft starts to be beneficial over the pure SEP for 27.5 g ms  . As a comparison, it was found18 that, in the 

case of direct interplanetary transfers, the hybrid propulsion decreased the payload mass fraction, with respect to 
pure SEP,  only if 22 g ms  . Therefore, it can be concluded that the hybrid sail is more beneficial for the pole-

sitter problem, and it is expected that near- to mid-term technology will be able to provide sails with loadings that 
can enable the hybrid pole-sitter mission. 

VI. Conclusions 
Optimal pole-sitter orbits were presented using hybrid solar electric propulsion (SEP) and solar sail propulsion. 

The combination of the two propulsion systems allows propellant saving over the pure SEP spacecraft, enabling 
longer missions; at the same time, the presence of low-thrust propulsion enables orbits that cannot be achieved with 
a pure sail. The analysis took into account constant-distance flat orbits, as well as solutions in which the spacecraft 
varies its altitude above either pole. For flat orbits, a shape based approach was used to find optimal solutions. 
However, if the distance from Earth is not pre-determined, optimal orbits were found solving an optimal control 
problem. A direct method based on pseudo-spectral discretization was demonstrated to be reliable and suitable for 
this aim, guaranteeing fast convergence to the optimal solution. Optimal, variable-distance orbits resulted in 
additional propellant mass saving. Furthermore, intermediate orbits were investigated, trading off either the 
maximum allowed distance from the Earth, or a requirement on the variation of the Earth polar distance. 

A preliminary mass budget showed that mid-term sail technology allows lower launch mass for long duration 
pole-sitter missions (6 years and above), and enables even longer missions, that are unfeasible with a pure SEP 
spacecraft. 
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