16,325 research outputs found

    Clinical and Procedural Effects of Transitioning to Contact Force Guided Ablation for Atrial Fibrillation.

    Get PDF
    Background: A major innovation in atrial fibrillation (AF) ablation has been the introduction of contact force (CF) sensing catheters. Objective: To evaluate procedural and clinical effects of transitioning to CF-guided AF ablation. Methods: Consecutive AF ablation patients were studiedduring the period of time of transitioning from a non-CF to CF sensing catheter. Procedural data recorded was total radiofrequency time, time to isolate the left pulmonary veins (LPVs), and time to isolate the right pulmonary veins (RPVs). Clinically, the 3 and 12-month maintenance of sinus rhythm was noted and compared by: paroxysmal vs. persistent AF; CT scan LA volume more or less than 150 cc; CHA2DS2VASC more or less than 2; and LVEF more or less than 55%. Safety data was recorded as well. Results: Total ablation times were shorter (113 vs.146 min, p=0.011)when using the CF catheters compared to non-CF ablations. This was driven by a decrease in both LPV (46 vs.72 min, p\u3c0.001) and RPV time (54 vs. 75 min, p=0.002).The use of CF catheter did not change the overall percentage of patients in sinus rhythm at 3 and 12-months of follow up. However, sinus rhythm was more frequent at 12 months with CF ablation inpatients with an LA volume of more than 150 cc when compared to non-CF ablation (84.6% and 52.4%, p=0.03). There was no difference in outcomes with stratification by CHA2DS2VASC score or LVEF. No significant difference in complications was noted. Conclusions: For AF ablation, the initial use of CF-sensing technology reduced procedure times with similar overall sinus rhythm maintenance at 3 and 12 months. CF improved 12-month outcomes in patients with an enlarged LA

    On the intermittent energy transfer at viscous scales in turbulent flows

    Full text link
    In this letter we present numerical and experimental results on the scaling properties of velocity turbulent fields in the range of scales where viscous effects are acting. A generalized version of Extended Self Similarity capable of describing scaling laws of the velocity structure functions down to the smallest resolvable scales is introduced. Our findings suggest the absence of any sharp viscous cutoff in the intermittent transfer of energy.Comment: 10 pages, plain Latex, 6 figures available upon request to [email protected]

    Performance characteristics of wind profiling radars

    Get PDF
    Doppler radars used to measure winds in the troposphere and lower stratosphere for weather analysis and forecasting are lower-sensitivity versions of mesosphere-stratosphere-troposphere radars widely used for research. The term wind profiler is used to denote these radars because measurements of vertical profiles of horizontal and vertical wind are their primary function. It is clear that wind profilers will be in widespread use within five years: procurement of a network of 30 wind profilers is underway. The Wave Propagation Laboratory (WPL) has operated a small research network of radar wind profilers in Colorado for about two and one-half years. The transmitted power and antenna aperture for these radars is given. Data archiving procedures have been in place for about one year, and this data base is used to evaluate the performance of the radars. One of the prime concerns of potential wind profilers users is how often and how long wind measurements are lacking at a given height. Since these outages constitute an important part of the performance of the wind profilers, they are calculated at three radar frequencies, 50-, 405-, and 915-MHz, (wavelengths of 6-, 0.74-, and 0.33-m) at monthly intervals to determine both the number of outages at each frequency and annual variations in outages

    An exact relation between Eulerian and Lagrangian velocity increment statistics

    Full text link
    We present a formal connection between Lagrangian and Eulerian velocity increment distributions which is applicable to a wide range of turbulent systems ranging from turbulence in incompressible fluids to magnetohydrodynamic turbulence. For the case of the inverse cascade regime of two-dimensional turbulence we numerically estimate the transition probabilities involved in this connection. In this context we are able to directly identify the processes leading to strongly non-Gaussian statistics for the Lagrangian velocity increments.Comment: 5 pages, 3 figure

    On Making Good Games - Using Player Virtue Ethics and Gameplay Design Patterns to Identify Generally Desirable Gameplay Features

    Get PDF
    This paper uses a framework of player virtues to perform a theoretical exploration of what is required to make a game good. The choice of player virtues is based upon the view that games can be seen as implements, and that these are good if they support an intended use, and the intended use of games is to support people to be good players. A collection of gameplay design patterns, identified through their relation to the virtues, is presented to provide specific starting points for considering design options for this type of good games. 24 patterns are identified supporting the virtues, including RISK/REWARD, DYNAMIC ALLIANCES, GAME MASTERS, and PLAYER DECIDED RESULTS, as are 7 countering three or more virtues, including ANALYSIS PARALYSIS, EARLY ELIMINATION, and GRINDING. The paper concludes by identifying limitations of the approach as well as by showing how it can be applied using other views of what are preferable features in games

    Multifractality of the Feigenbaum attractor and fractional derivatives

    Full text link
    It is shown that fractional derivatives of the (integrated) invariant measure of the Feigenbaum map at the onset of chaos have power-law tails in their cumulative distributions, whose exponents can be related to the spectrum of singularities f(α)f(\alpha). This is a new way of characterizing multifractality in dynamical systems, so far applied only to multifractal random functions (Frisch and Matsumoto (J. Stat. Phys. 108:1181, 2002)). The relation between the thermodynamic approach (Vul, Sinai and Khanin (Russian Math. Surveys 39:1, 1984)) and that based on singularities of the invariant measures is also examined. The theory for fractional derivatives is developed from a heuristic point view and tested by very accurate simulations.Comment: 20 pages, 5 figures, J.Stat.Phys. in pres

    Time-variability in the Interstellar Boundary Conditions of the Heliosphere: Effect of the Solar Journey on the Galactic Cosmic Ray Flux at Earth

    Full text link
    During the solar journey through galactic space, variations in the physical properties of the surrounding interstellar medium (ISM) modify the heliosphere and modulate the flux of galactic cosmic rays (GCR) at the surface of the Earth, with consequences for the terrestrial record of cosmogenic radionuclides. One phenomenon that needs studying is the effect on cosmogenic isotope production of changing anomalous cosmic ray fluxes at Earth due to variable interstellar ionizations. The possible range of interstellar ram pressures and ionization levels in the low density solar environment generate dramatically different possible heliosphere configurations, with a wide range of particle fluxes of interstellar neutrals, their secondary products, and GCRs arriving at Earth. Simple models of the distribution and densities of ISM in the downwind direction give cloud transition timescales that can be directly compared with cosmogenic radionuclide geologic records. Both the interstellar data and cosmogenic radionuclide data are consistent with cloud transitions during the Holocene, with large and assumption-dependent uncertainties. The geomagnetic timeline derived from cosmic ray fluxes at Earth may require adjustment to account for the disappearance of anomalous cosmic rays when the Sun is immersed in ionized gas.Comment: Submitted to Space Sciences Review

    Renormalized Equilibria of a Schloegl Model Lattice Gas

    Full text link
    A lattice gas model for Schloegl's second chemical reaction is described and analyzed. Because the lattice gas does not obey a semi-detailed-balance condition, the equilibria are non-Gibbsian. In spite of this, a self-consistent set of equations for the exact homogeneous equilibria are described, using a generalized cluster-expansion scheme. These equations are solved in the two-particle BBGKY approximation, and the results are compared to numerical experiment. It is found that this approximation describes the equilibria far more accurately than the Boltzmann approximation. It is also found, however, that spurious solutions to the equilibrium equations appear which can only be removed by including effects due to three-particle correlations.Comment: 21 pages, REVTe

    A note on the forced Burgers equation

    Full text link
    We obtain the exact solution for the Burgers equation with a time dependent forcing, which depends linearly on the spatial coordinate. For the case of a stochastic time dependence an exact expression for the joint probability distribution for the velocity fields at multiple spatial points is obtained. A connection with stretched vortices in hydrodynamic flows is discussed.Comment: 10 page

    Is the Sun Embedded in a Typical Interstellar Cloud?

    Full text link
    The physical properties and kinematics of the partially ionized interstellar material near the Sun are typical of warm diffuse clouds in the solar vicinity. The interstellar magnetic field at the heliosphere and the kinematics of nearby clouds are naturally explained in terms of the S1 superbubble shell. The interstellar radiation field at the Sun appears to be harder than the field ionizing ambient diffuse gas, which may be a consequence of the low opacity of the tiny cloud surrounding the heliosphere. The spatial context of the Local Bubble is consistent with our location in the Orion spur.Comment: "From the Outer Heliosphere to the Local Bubble", held at International Space Sciences Institute, October 200
    corecore