18 research outputs found

    Modelling the impact of liner shipping network perturbations on container cargo routing: Southeast Asia to Europe application

    Get PDF
    Understanding how container routing stands to be impacted by different scenarios of liner shipping network perturbations such as natural disasters or new major infrastructure developments is of key importance for decision-making in the liner shipping industry. The variety of actors and processes within modern supply chains and the complexity of their relationships have previously led to the development of simulation-based models, whose application has been largely compromised by their dependency on extensive and often confidential sets of data. This study proposes the application of optimisation techniques less dependent on complex data sets in order to develop a quantitative framework to assess the impacts of disruptive events on liner shipping networks. We provide a categorization of liner network perturbations, differentiating between systemic and external and formulate a container assignment model that minimises routing costs extending previous implementations to allow feasible solutions when routing capacity is reduced below transport demand. We develop a base case network for the Southeast Asia to Europe liner shipping trade and review of accidents related to port disruptions for two scenarios of seismic and political conflict hazards. Numerical results identify alternative routing paths and costs in the aftermath of port disruptions scenarios and suggest higher vulnerability of intra-regional connectivity

    A framework to assess quality and uncertainty in disaster loss data

    Get PDF
    There is a growing interest in the systematic and consistent collection of disasterloss data for different applications. Therefore, the collected data must follow a set oftechnical requirements to guarantee its usefulness. One of those requirements is theavailability of a measure of the uncertainty in the collected data to express its quality for agiven purpose. Many of the existing disaster loss databases do not provide such uncertainty/qualitymeasures due to the lack of a simple and consistent approach to expressuncertainty. After reviewing existing literature on the subject, a framework to express theuncertainty in disaster loss data is proposed. This framework builds on an existinguncertainty classification that was updated and combined with an existing method for datacharacterization. The proposed approach is able to establish a global score that reflects theoverall uncertainty in a certain loss indicator and provides a measure of its quality

    Quantifying the epistemic uncertainty in ground motion models and prediction

    No full text
    The aim of this paper is to compute the ground-motion prediction equation (GMPE)-specific components of epistemic uncertainty, so that they may be better understood and the model standard deviation potentially reduced. The reduced estimate of the model standard deviation may also be more representative of the true aleatory uncertainty in the ground-motion predictions.The epistemic uncertainty due to input variable uncertainty and uncertainty in the estimation of the GMPE coefficients are examined. An enhanced methodology is presented that may be used to analyse their impacts on GMPEs and GMPE predictions. The impacts of accounting for the input variable uncertainty in GMPEs are demonstrated using example values from the literature and by applying the methodology to the GMPE for Arias Intensity. This uncertainty is found to have a significant effect on the estimated coefficients of the model and a small effect on the value of the model standard deviation.The impacts of uncertainty in the GMPE coefficients are demonstrated by quantifying the uncertainty in hazard maps. This paper provides a consistent approach to quantifying the epistemic uncertainty in hazard maps using Monte Carlo simulations and a logic tree framework. The ability to quantify this component of epistemic uncertainty offers significant enhancements over methods currently used in the creation of hazard maps as it is both theoretically consistent and can be used for any magnitude-distance scenario

    The European building stock inventory: creating and validating a uniform database for earthquake risk modelling

    No full text
    This paper discusses the problem of validation of a proposed uniform European building database. It proposes a process for validation using a set of so-called "test-bed" sites in Europe in which detailed local building-bybuilding surveys have been made in the recent past in a variety of projects. It explains how the data from these studies has been harmonised; proposes an appropriate building classification system for validation; and proposes a set of validation metrics which can be used to assess the quality of the data in the uniform database against the data from the test-bed sites, and to estimate the uncertainties which can be assigned to the database. An example of validation against an existing approximate Europe-wide inventory is given

    The value of multiple earthquake missions: the EEFIT L’Aquila Earthquake experience

    Get PDF
    In November 2012 EEFIT launched its first ever return mission to an earthquake affected site. The L’Aquila Earthquake site was chosen as this is a recent European event of interest to the UK and European earthquake engineering community. The main aims of this return mission were to document the earthquake recovery process and this paper presents an overview of the post-disaster emergency phase and transition to reconstruction in the Aquila area after the earthquake. It takes an earthquake engineering perspective, highlighting areas mainly of interest to the fields of structural/seismic engineering and reconstruction management. Within the paper, reference is made to published literature, but also to data collected in the field during the return mission that would not otherwise have been available. The paper presents some specific observations and lessons learned from the L’Aquila return mission. However, in light of current international efforts in conducting return missions, the paper ends with some reflections on the value that return missions can provide to the field of earthquake engineering in general, based on the EEFIT L’Aquila experience
    corecore