256 research outputs found

    Natural Astaxanthin Is a Green Antioxidant Able to Counteract Lipid Peroxidation and Ferroptotic Cell Death

    Get PDF
    Astaxanthin is a red orange xanthophyll carotenoid produced mainly by microalgae but which can also be chemically synthesized. As demonstrated by several studies, this lipophilic molecule is endowed with potent antioxidant properties and is able to modulate biological functions. Unlike synthetic astaxanthin, natural astaxanthin (NAst) is considered safe for human nutrition, and its production is considered eco-friendly. The antioxidant activity of astaxanthin depends on its bioavailability, which, in turn, is related to its hydrophobicity. In this study, we analyzed the water-solubility of NAst and assessed its protective effect against oxidative stress by means of different approaches using a neuroblastoma cell model. Moreover, due to its highly lipophilic nature, astaxanthin is particularly protective against lipid peroxidation; therefore, the role of NAst in counteracting ferroptosis was investigated. This recently discovered process of programmed cell death is indeed characterized by iron-dependent lipid peroxidation and seems to be linked to the onset and development of oxidative-stress-related diseases. The promising results of this study, together with the “green sources” from which astaxanthin could derive, suggest a potential role for NAst in the prevention and co-treatment of chronic degenerative diseases by means of a sustainable approach

    Naphthoquinone Derivatives Exert Their Antitrypanosomal Activity via a Multi-Target Mechanism

    Get PDF
    BACKGROUND AND METHODOLOGY: Recently, we reported on a new class of naphthoquinone derivatives showing a promising anti-trypanosomatid profile in cell-based experiments. The lead of this series (B6, 2-phenoxy-1,4-naphthoquinone) showed an ED(50) of 80 nM against Trypanosoma brucei rhodesiense, and a selectivity index of 74 with respect to mammalian cells. A multitarget profile for this compound is easily conceivable, because quinones, as natural products, serve plants as potent defense chemicals with an intrinsic multifunctional mechanism of action. To disclose such a multitarget profile of B6, we exploited a chemical proteomics approach. PRINCIPAL FINDINGS: A functionalized congener of B6 was immobilized on a solid matrix and used to isolate target proteins from Trypanosoma brucei lysates. Mass analysis delivered two enzymes, i.e. glycosomal glycerol kinase and glycosomal glyceraldehyde-3-phosphate dehydrogenase, as potential molecular targets for B6. Both enzymes were recombinantly expressed and purified, and used for chemical validation. Indeed, B6 was able to inhibit both enzymes with IC(50) values in the micromolar range. The multifunctional profile was further characterized in experiments using permeabilized Trypanosoma brucei cells and mitochondrial cell fractions. It turned out that B6 was also able to generate oxygen radicals, a mechanism that may additionally contribute to its observed potent trypanocidal activity. CONCLUSIONS AND SIGNIFICANCE: Overall, B6 showed a multitarget mechanism of action, which provides a molecular explanation of its promising anti-trypanosomatid activity. Furthermore, the forward chemical genetics approach here applied may be viable in the molecular characterization of novel multitarget ligands

    Parkinson's disease recovery by GM1 oligosaccharide treatment in the B4galnt1+/- mouse model

    Get PDF
    Given the recent in vitro discovery that the free soluble oligosaccharide of GM1 is the bioactive portion of GM1 for neurotrophic functions, we investigated its therapeutic potential in the B4galnt1+/- mice, a model of sporadic Parkinson's disease. We found that the GM1 oligosaccharide, systemically administered, reaches the brain and completely rescues the physical symptoms, reduces the abnormal nigral \u3b1-synuclein content, restores nigral tyrosine hydroxylase expression and striatal neurotransmitter levels, overlapping the wild-type condition. Thus, this study supports the idea that the Parkinson's phenotype expressed by the B4galnt1+/- mice is due to a reduced level of neuronal ganglioside content and lack of interactions between the oligosaccharide portion of GM1 with specific membrane proteins. It also points to the therapeutic potential of the GM1 oligosaccharide for treatment of sporadic Parkinson's disease

    A model to prioritize access to elective surgery on the basis of clinical urgency and waiting time

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Prioritization of waiting lists for elective surgery represents a major issue in public systems in view of the fact that patients often suffer from consequences of long waiting times. In addition, administrative and standardized data on waiting lists are generally lacking in Italy, where no detailed national reports are available. This is true although since 2002 the National Government has defined implicit Urgency-Related Groups (URGs) associated with Maximum Time Before Treatment (MTBT), similar to the Australian classification. The aim of this paper is to propose a model to manage waiting lists and prioritize admissions to elective surgery.</p> <p>Methods</p> <p>In 2001, the Italian Ministry of Health funded the Surgical Waiting List Info System (SWALIS) project, with the aim of experimenting solutions for managing elective surgery waiting lists. The project was split into two phases. In the first project phase, ten surgical units in the largest hospital of the Liguria Region were involved in the design of a pre-admission process model. The model was embedded in a Web based software, adopting Italian URGs with minor modifications. The SWALIS pre-admission process was based on the following steps: 1) urgency assessment into URGs; 2) correspondent assignment of a pre-set MTBT; 3) real time prioritization of every referral on the list, according to urgency and waiting time. In the second project phase a prospective descriptive study was performed, when a single general surgery unit was selected as the deployment and test bed, managing all registrations from March 2004 to March 2007 (1809 ordinary and 597 day cases). From August 2005, once the SWALIS model had been modified, waiting lists were monitored and analyzed, measuring the impact of the model by a set of performance indexes (average waiting time, length of the waiting list) and Appropriate Performance Index (API).</p> <p>Results</p> <p>The SWALIS pre-admission model was used for all registrations in the test period, fully covering the case mix of the patients referred to surgery. The software produced real time data and advanced parameters, providing patients and users useful tools to manage waiting lists and to schedule hospital admissions with ease and efficiency. The model protected patients from horizontal and vertical inequities, while positive changes in API were observed in the latest period, meaning that more patients were treated within their MTBT.</p> <p>Conclusion</p> <p>The SWALIS model achieves the purpose of providing useful data to monitor waiting lists appropriately. It allows homogeneous and standardized prioritization, enhancing transparency, efficiency and equity. Due to its applicability, it might represent a pragmatic approach towards surgical waiting lists, useful in both clinical practice and strategic resource management.</p

    Trends in life science grid: from computing grid to knowledge grid

    Get PDF
    BACKGROUND: Grid computing has great potential to become a standard cyberinfrastructure for life sciences which often require high-performance computing and large data handling which exceeds the computing capacity of a single institution. RESULTS: This survey reviews the latest grid technologies from the viewpoints of computing grid, data grid and knowledge grid. Computing grid technologies have been matured enough to solve high-throughput real-world life scientific problems. Data grid technologies are strong candidates for realizing "resourceome" for bioinformatics. Knowledge grids should be designed not only from sharing explicit knowledge on computers but also from community formulation for sharing tacit knowledge among a community. CONCLUSION: Extending the concept of grid from computing grid to knowledge grid, it is possible to make use of a grid as not only sharable computing resources, but also as time and place in which people work together, create knowledge, and share knowledge and experiences in a community

    Features of Idebenone and Related Short-Chain Quinones that Rescue ATP Levels under Conditions of Impaired Mitochondrial Complex I

    Get PDF
    Short-chain quinones have been investigated as therapeutic molecules due to their ability to modulate cellular redox reactions, mitochondrial electron transfer and oxidative stress, which are pathologically altered in many mitochondrial and neuromuscular disorders. Recently, we and others described that certain short-chain quinones are able to bypass a deficiency in complex I by shuttling electrons directly from the cytoplasm to complex III of the mitochondrial respiratory chain to produce ATP. Although this energy rescue activity is highly interesting for the therapy of disorders associated with complex I dysfunction, no structure-activity-relationship has been reported for short-chain quinones so far. Using a panel of 70 quinones, we observed that the capacity for this cellular energy rescue as well as their effect on lipid peroxidation was influenced more by the physicochemical properties (in particular logD) of the whole molecule than the quinone moiety itself. Thus, the observed correlations allow us to explain the differential biological activities and therapeutic potential of short-chain quinones for the therapy of disorders associated with mitochondrial complex I dysfunction and/or oxidative stress

    Treatment of CoQ10 Deficient Fibroblasts with Ubiquinone, CoQ Analogs, and Vitamin C: Time- and Compound-Dependent Effects

    Get PDF
    Background: Coenzyme Q(10) (CoQ(10)) and its analogs are used therapeutically by virtue of their functions as electron carriers, antioxidant compounds, or both. However, published studies suggest that different ubiquinone analogs may produce divergent effects on oxidative phosphorylation and oxidative stress.Methodology/Principal Findings: To test these concepts, we have evaluated the effects of CoQ(10), coenzyme Q(2) (CoQ(2)), idebenone, and vitamin C on bioenergetics and oxidative stress in human skin fibroblasts with primary CoQ(10) deficiency. A final concentration of 5 mu M of each compound was chosen to approximate the plasma concentration of CoQ(10) of patients treated with oral ubiquinone. CoQ(10) supplementation for one week but not for 24 hours doubled ATP levels and ATP/ADP ratio in CoQ(10) deficient fibroblasts therein normalizing the bioenergetics status of the cells. Other compounds did not affect cellular bioenergetics. In COQ2 mutant fibroblasts, increased superoxide anion production and oxidative stress-induced cell death were normalized by all supplements.Conclusions/Significance: These results indicate that: 1) pharmacokinetics of CoQ(10) in reaching the mitochondrial respiratory chain is delayed; 2) short-tail ubiquinone analogs cannot replace CoQ(10) in the mitochondrial respiratory chain under conditions of CoQ(10) deficiency; and 3) oxidative stress and cell death can be counteracted by administration of lipophilic or hydrophilic antioxidants. The results of our in vitro experiments suggest that primary CoQ(10) deficiencies should be treated with CoQ(10) supplementation but not with short-tail ubiquinone analogs, such as idebenone or CoQ(2). Complementary administration of antioxidants with high bioavailability should be considered if oxidative stress is present
    corecore