815 research outputs found

    Radiometric observations at 20.6, 31.65, and 90.0 GHz: Continuing studies

    Get PDF
    Ground based radiometer measurements at 20.6, 31.65, and 90.0 GHz were analyzed to provide attenuation statistics, thus extending the data base of previous NAPEX studies. Using data from colocated radiosondes, comparisons of measurements and calculations of brightness temperatures are presented. The oxygen absorption model of Rosenkranz and the water vapor absorption models of Liebe and of Waters are used. Data from July 1987 at San Nicolas Island, California and from December 1987, August and November 1988 at Denver, Colorado, are included. Joint attenuation statistics at 20.6 and 31.65 GHz are presented for two locations of the Colorado Research Network for December 1987 and August 1988

    Brightness temperature and attenuation diversity statistics at 20.6 and 31.65 GHz for the Colorado Research Network

    Get PDF
    A limited network of four dual-channel microwave radiometers, with frequencies of 20.6 and 31.65 GHz, was operated in the front range of eastern Colorado from 1985 to 1988. Data, from November 1987 through October 1988 are analyzed to determine both single-station and joint-station brightness temperature and attenuation statistics. Only zenith observations were made. The spatial separations of the stations varied from 50 km to 190 km. Before the statistics were developed, the data were screened by rigorous quality control methods. One such method, that of 20.6 vs. 31.65 GHz scatter plots, is analyzed in detail, and comparisons are made of measured vs calculated data. At 20.6 and 31.65 GHz, vertical attenuations of 5 and 8 dB are exceeded 0.01 percent of the time. For these four stations and at the same 0.01 percent level, diversity gains from 6 to 8 dB are possible with the 50 to 190 km separations

    Towards the determination of the dimension of the critical surface in asymptotically safe gravity

    Get PDF
    We compute the beta functions of Higher Derivative Gravity within the Functional Renormalization Group approach, going beyond previously studied approximations. We find that the presence of a nontrivial Newtonian coupling induces, in addition to the free fixed point of the one-loop approximation, also two nontrivial fixed points, of which one has the right signs to be free from tachyons. Our results are consistent with earlier suggestions that the dimension of the critical surface for pure gravity is three

    Brightness temperature and attenuation statistics at 20.6 and 31.65 GHz

    Get PDF
    Attenuation and brightness temperature statistics at 20.6 and 31.65 GHz are analyzed for a year's worth of data. The data were collected in 1988 at Denver and Platteville, Colorado. The locations are separated by 49 km. Single-station statistics are derived for the entire year. Quality control procedures are discussed and examples of their application are given

    Conformal anomaly from gauge fields without gauge fixing

    Get PDF
    We show how the Weyl anomaly generated by gauge fields, can be computed from manifestly gauge invariant and diffeomorphism invariant exact renormalization group equations, without having to fix the gauge at any stage. Regularisation is provided by covariant higher derivatives and by embedding the Maxwell field into a spontaneously broken U(11)U(1|1) supergauge theory. We first provide a realisation that leaves behind two versions of the original U(1)U(1) gauge field, and then construct a manifestly U(11)U(1|1) supergauge invariant flow equation which leaves behind only the original Maxwell field in the spontaneously broken regime.Comment: 24 page

    Asymptotic safety of quantum gravity beyond Ricci scalars

    Get PDF
    We investigate the asymptotic safety conjecture for quantum gravity including curvature invariants beyond Ricci scalars. Our strategy is put to work for families of gravitational actions which depend on functions of the Ricci scalar, the Ricci tensor, and products thereof. Combining functional renormalization with high order polynomial approximations and full numerical integration we derive the renormalization group flow for all couplings and analyse their fixed points, scaling exponents, and the fixed point effective action as a function of the background Ricci curvature. The theory is characterized by three relevant couplings. Higher-dimensional couplings show near-Gaussian scaling with increasing canonical mass dimension. We find that Ricci tensor invariants stabilize the UV fixed point and lead to a rapid convergence of polynomial approximations. We apply our results to models for cosmology and establish that the gravitational fixed point admits inflationary solutions. We also compare findings with those from fðRÞ-type theories in the same approximation and pin-point the key new effects due to Ricci tensor interactions. Implications for the asymptotic safety conjecture of gravity are indicated

    Individuality, kin similarity and experimental playback of contact calls in cooperatively breeding riflemen

    Get PDF
    Riflemen/tītipounamu (Acanthisitta chloris) are kin-based cooperatively breeding birds, which appear able to recognise their relatives. Here, we investigate the potential for vocalisations to act as recognition cues in riflemen. We identified an appropriate contact call and recorded it at the nest from 19 adult riflemen. Measurements of call characteristics were individually repeatable. In addition, call similarity was significantly correlated with relatedness among all birds and among males. Thus, in principle, these contact calls contain sufficient information for individual recognition of familiar kin, and some assessment of relatedness between unfamiliar birds. To test whether riflemen responded differently to calls of kin, we broadcast calls of relatives and non-relatives as separate treatments in a playback experiment. Focal birds rarely responded aggressively or affiliatively, and their tendency to do so was unrelated to treatment. We conclude that zip calls are suitable kin recognition cues, but whether they are used as such remains unknown

    Exploration of bivalent ligands targeting putative mu opioid receptor and chemokine receptor CCR5 dimerization

    Get PDF
    Modern antiretroviral therapies have provided HIV-1 infected patients longer lifespans and better quality of life. However, several neurological complications are now being seen in these patients due to HIV-1 associated injury of neurons by infected microglia and astrocytes. In addition, these effects can be further exacerbated with opiate use and abuse. One possible mechanism for such potentiation effects of opiates is the interaction of the mu opioid receptor (MOR) with the chemokine receptor CCR5 (CCR5), a known HIV-1 co-receptor, to form MOR-CCR5 heterodimer. In an attempt to understand this putative interaction and its relevance to neuroAIDS, we designed and synthesized a series of bivalent ligands targeting the putative CCR5-MOR heterodimer. To understand how these bivalent ligands may interact with the heterodimer, biological studies including calcium mobilization inhibition, binding affinity, HIV-1 invasion, and cell fusion assays were applied. In particular, HIV-1 infection assays using human peripheral blood mononuclear cells, macrophages, and astrocytes revealed a notable synergy in activity for one particular bivalent ligand. Further, a molecular model of the putative CCR5-MOR heterodimer was constructed, docked with the bivalent ligand, and molecular dynamics simulations of the complex was performed in a membrane-water system to help understand the biological observation

    Capillary pressure of van der Waals liquid nanodrops

    Full text link
    The dependence of the surface tension on a nanodrop radius is important for the new-phase formation process. It is demonstrated that the famous Tolman formula is not unique and the size-dependence of the surface tension can distinct for different systems. The analysis is based on a relationship between the surface tension and disjoining pressure in nanodrops. It is shown that the van der Waals interactions do not affect the new-phase formation thermodynamics since the effect of the disjoining pressure and size-dependent component of the surface tension cancel each other.Comment: The paper is dedicated to the 80th anniversary of A.I. Rusano

    Linking Emergency Medical Services and Emergency Department Data to Improve Overdose Surveillance in North Carolina

    Get PDF
    Introduction Linking emergency medical services (EMS) data to emergency department (ED) data enables assessing the continuum of care and evaluating patient outcomes. We developed novel methods to enhance linkage performance and analysis of EMS and ED data for opioid overdose surveillance in North Carolina. Methods We identified data on all EMS encounters in North Carolina during January 1–November 30, 2017, with documented naloxone administration and transportation to the ED. We linked these data with ED visit data in the North Carolina Disease Event Tracking and Epidemiologic Collection Tool. We manually reviewed a subset of data from 12 counties to create a gold standard that informed developing iterative linkage methods using demographic, time, and destination variables. We calculated the proportion of suspected opioid overdose EMS cases that received International Classification of Diseases, Tenth Revision, Clinical Modification diagnosis codes for opioid overdose in the ED. Results We identified 12 088 EMS encounters of patients treated with naloxone and transported to the ED. The 12-county subset included 1781 linkage-eligible EMS encounters, with historical linkage of 65.4% (1165 of 1781) and 1.6% false linkages. Through iterative linkage methods, performance improved to 91.0% (1620 of 1781) with 0.1% false linkages. Among statewide EMS encounters with naloxone administration, the linkage improved from 47.1% to 91.1%. We found diagnosis codes for opioid overdose in the ED among 27.2% of statewide linked records. Practice Implications Through an iterative linkage approach, EMS–ED data linkage performance improved greatly while reducing the number of false linkages. Improved EMS–ED data linkage quality can enhance surveillance activities, inform emergency response practices, and improve quality of care through evaluating initial patient presentations, field interventions, and ultimate diagnoses
    corecore