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1. Introduction

Higher Derivative Gravity (HDG) is the theory of gravity based 
on the metric as the carrier of degrees of freedom, with an action 
containing terms of order zero, one and two in the curvature. It 
contains both dimensionful couplings (the cosmological and New-
ton constant) and dimensionless ones (the coefficients of the HD 
terms). When treated perturbatively in the latter, it is renormaliz-
able [1], but not unitary. Following some earlier attempts [2,3], its 
one-loop beta functions were correctly derived for the first time 
in [4]; for more details and generalizations, see [5,6]. Depending 
on the signs of the couplings, the theory can be asymptotically 
free, but it has ghosts and/or tachyons. There has been recently a 
revival of interest in this theory, and proposals to get around its 
problems in various ways [7–17].

In the asymptotic safety approach to quantum gravity, one tries 
to construct a continuum limit around an interacting fixed point 
(FP) [18]. The main tool to investigate the gravitational renor-
malization group has been the Functional Renormalization Group 
Equation (FRGE), as applied for the first time to gravity by Mar-
tin Reuter [19]. It defines a flow on the theory space consisting of 
all diffeomorphism invariant functionals of the metric. One expects 
that at an interacting gravitational FP, infinitely many gravitational 
couplings will be nonzero. In spite of this complication, much ev-
idence for the existence of such a FP has been collected so far 
[20,21].
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In the context of asymptotic safety, when one uses the FRGE, 
there is never the need to postulate the form of the bare action 
to be used in the path integral. Instead, one directly calculates the 
flow of the effective action as a function of an external “coarse-
graining” scale, or IR cutoff, k. In this context, the action of HDG 
can be used as an ansatz for the running effective action. We will 
call this the “HDG truncation”. It tracks the flow of the theory in 
a five-dimensional “theory space” parametrized by the couplings: 
V , Z N , λ, ξ and ρ , defined below. The beta functions of HDG 
have been studied from this point of view in several papers. They 
were obtained in a one-loop approximation to the FRGE in [22–25]. 
In these calculations, the beta functions of the HD couplings are 
asymptotically free, in agreement with the old perturbative results, 
but the flow of the dimensionful couplings looks very similar to 
the one of the Einstein-Hilbert truncation, and exhibits a nontriv-
ial FP for the cosmological and Newton constant. To go beyond 
one loop, one has to keep terms involving the beta functions in the 
r.h.s. of the flow equation, and then solve these algebraic equations 
for the beta functions. We highlight this process in Section 3.1. 
This produces non-linearities that amount to resummations of in-
finitely many loop diagrams. This has been calculated in [26,27] on 
a generic Einstein manifold, and a fully interacting FP was found, 
but these calculations were limited to one or two, out of the three 
HD couplings. This may seem to be sufficient, since one of the 
three couplings is the coefficient of the Euler term, that does not 
contribute to the local dynamics. Unfortunately, as we shall see 
in Sect.2.1, on an Einstein manifold one computes the beta func-
tion of certain linear combinations of the three couplings, and it 
is actually impossible to identify the beta function of the two dy-
namically interesting ones: there is an unknown mixing with the 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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beta function of the Euler term. To compute the beta functions of 
all the independent couplings is the main task of this paper.

The main motivation for this is the determination of the dimen-
sion of the UV critical surface. There is evidence from the f (R)

truncations that the scaling exponents at the nontrivial fixed point 
are not too different from the classical ones, so that couplings with 
positive mass dimension remain relevant and couplings with neg-
ative mass dimension remain irrelevant FP [28–32]. The marginal 
coupling of the R2 term becomes relevant, so altogether, in this 
truncation, the dimension of the critical surface seems to be three. 
An attempt to include different tensor structures has been made 
in [31], where actions of the form f1(Rμν Rμν) + R f2(Rμν Rμν) are 
studied, leading to the same conclusion. A limitation of these cal-
culations is that, on a spherical background, it is not possible to 
properly disentangle independent couplings with the same number 
of curvatures. The case of Ricci tensor squared and scalar curvature 
squared actions on an Einstein manifold, has already been cited 
above [27]. While more general than spheres, Einstein manifolds 
are still not general enough to distinguish all invariants. With this 
limitation, it was found again that the dimension of the critical 
surface is three. This suggests that some linear combination of the 
HD couplings may be an irrelevant operator. It seems possible, and 
even likely, that the dimension of the critical surface in pure grav-
ity is determined entirely by the fate of the HD couplings, since 
they are not expected to remain marginal at an interacting FP.1

We find that of the three dimensionless couplings, one becomes 
relevant, one irrelevant and one – the coefficient of the Euler term 
– remains marginal. The beta function of the Euler term is related 
to the a-function. The a-theorem states that when two fixed points 
are joined by an RG trajectory, the value of a at the IR fixed point 
is lower than the one at the UV fixed point. We find some evidence 
that this may hold also in gravity.

In the present paper we try to shed some light on these issues 
by computing the beta functions of all the HD couplings beyond 
the one-loop approximation, taking the anomalous dimensions into 
account. We shall do this by using the “Universal RG Machine” 
to compute the r.h.s. of the FRGE on an arbitrary background. 
This is a technique based on non-diagonal heat kernel coefficients 
that can be used to evaluate functional traces involving covariant 
derivatives acting on a function of a Laplacian. The Universal RG 
Machine has been introduced, and applied to the Einstein-Hilbert 
truncation, in [34]. Later it was used to calculate the one-loop beta 
functions in HDG [35]. Technical details are given in [36]. Here we 
bring that program one step forward by evaluating the full beta 
functions of HDG, including the anomalous dimensions. The main 
steps of the calculation are outlined in Sect.2, and in Sect.3 we de-
scribe the results. We find three fixed points, of which one has 
vanishing higher derivative couplings, while the others are fully 
interacting. In principle, any of these could be a viable UV fixed 
point. To have a viable theory, one would also have to prove uni-
tarity. For the first of these fixed points, one could apply the argu-
ments developed in perturbation theory [7–17]. For the remaining 
ones, the issue is more involved and will require a detailed study 
of the two point function.

2. Beta functions

2.1. Why Einstein backgrounds are not enough

Let us momentarily concentrate on the HD terms, that we can 
write as LH D = αR2 + βR2

μν + γ R2
μνρλ . Due to the fact that the 

1 So far the only indication that things could be more complicated comes from 
work in progress by Kluth and Litim on actions of the form f1(Rμνρσ Rμνρσ ) +
R f2(Rμνρσ Rμνρσ ), where a term cubic in curvature seems to become relevant [33].
2

Gauss–Bonnet combination E = R2
μναβ − 4R2

μν + R2 is topological, 
one of these couplings is uninteresting as far as local dynamics is 
concerned. It is therefore more meaningful to write the Lagrangian 
as

LH D = 1

2λ
C2 + 1

ξ
R2 − 1

ρ
E (2.1)

where

1

ξ
= 3α + β + γ

3
,

1

2λ
= β + 4γ

2
, − 1

ρ
= −β + 2γ

2
, (2.2)

and C2 = R2
μναβ − 2R2

μν + 1
3 R2 is the square of the Weyl ten-

sor. We are mainly interested in the beta functions of λ and ξ . 
Calculations are simpler on an Einstein background. In this case 
E = Rμνρσ Rμνρσ and C2 = Rμνρσ Rμνρσ − R2/6, so

LH D =
(

1

ξ
− 1

12λ

)
R2 +

(
1

2λ
− 1

ρ

)
E . (2.3)

This implies that if we expand the r.h.s. of the functional RG equa-
tion on an Einstein background, and we interpret the coefficients 
of R2 and E = Rμνρσ Rμνρσ as beta functions, we can read off the 
beta functions of two combinations of λ, ξ , ρ but we are unable 
to unambiguously identify βλ and βξ . To do this, we need an addi-
tional independent equation, that in turn requires a more general 
background. This is what we do in this paper.

All calculations will be based on the Euclidean action

S =
∫

d4x
√−g[V − Z N R +LH D ], (2.4)

where Z N = 1
16πG , G being Newton’s constant, V = 2�Z N and �

is the cosmological constant. Sometimes we shall use the combi-
nations

ω ≡ −3λ

ξ
, θ ≡ λ

ρ
. (2.5)

2.2. Remark on the topological term

Before embarking in calculations, we can make a general re-
mark on the Gauss-Bonnet term, that actually holds independently 
of the truncation. Due to the topological character of the term E , its 
coefficient 1/ρ does not appear in the Hessian and therefore does 
not appear in the r.h.s. of the flow equation. Thus the beta function 
of ρ must have the form

βρ = − 1

16π2
aρ2 , (2.6)

where a is a function of all the other couplings, but not of ρ itself. 
In the search of a fixed point one can solve first the equations of 
all the other couplings, which are also independent of ρ . When 
these fixed point values are inserted in (2.6), a becomes just a 
number. The UV behavior of ρ is determined by the value of this 
number. If a = 0, ρ could reach any value in the UV. If a > 0 (a <
0), when all other couplings are very close to a fixed point, it will 
run logarithmically to zero from above (below).

2.3. Expansion and gauge fixing

We split the metric gμν = ḡμν +hμν , where ḡμν is an arbitrary 
background. For details of the expansion of the action, we refer to 
[24]. The gauge-fixing and ghost action can be written

LG F+F P /
√

ḡ = − 1

2a
χμY μνχν + i Z ghc̄μ�

(gh)
μν cν

+ 1
ZY bμY μνbν + ZY ζ̄μY μνζμ, (2.7)
2
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where c̄μ , cμ are complex ghosts and bμ is a real communting 
field, ζ̄μ , ζμ are complex anticommuting fields, and

χμ ≡ ∇̄λhλμ + b∇̄μh ,

�
(gh)
μν ≡ gμν∇̄2 + (2b + 1)∇̄μ∇̄ν + R̄μν ,

Yμν ≡ ḡμν∇̄2 + c∇̄μ∇̄ν − f ∇̄ν∇̄μ , (2.8)

where a, b, c and f are gauge parameters. There is some freedom 
in how we choose the wave function renormalisations Z gh and ZY

since they can be rescaled while keeping Z 2
gh ZY = 1/a fixed with-

out affecting the path integral. In our calculations we fix

Z gh = 1 , ZY = 1/a (2.9)

We make the usual gauge choice

a = λ , b = −1 + 4ω

4 + 4ω
, c = 2

3
(1 + ω) , f = 1 , (2.10)

leading to a minimal fourth order operator for the fluctuations. The 
operators in (2.7) are then

�
(gh)
μν ≡ gμν∇̄2 − σgh∇̄μ∇̄ν + R̄μν,

Yμν ≡ ḡμν∇̄2 − σY ∇̄μ∇̄ν − Rμν, (2.11)

with

σgh = −1 − 2b = − 1 − 2ω

2(1 + ω)
;

σY = 1 − 2
γ − α

β + 4γ
= 1 − 2ω

3
.

(2.12)

We note that the cancellation between unphysical degrees of free-
dom becomes exact in the “Landau gauge” limit a → 0, which 
happens to be satisfied in the asymptotically free regime.

Then, the quadratic terms in the action can be written in the 
form [24]

L(2) = hμν K μνρσOρσ
αβhαβ, (2.13)

where the operator O is

O = �2 + Vρλ∇̄ρ∇̄λ + U , (2.14)

with � = −∇̄2, U = K −1W and we write

K = β + 4γ

4

(
I + 4α + β

γ − α
P

)
,

K −1 = 4

β + 4γ

(
I − 4α + β

3α + β + γ
P

)
,

(2.15)

where I is the identity in the space of symmetric tensor and P is 
a projector

Iμν,αβ ≡ δμν,αβ = 1

2
(ḡμα ḡνβ + ḡμβ ḡνα) ,

Pμν
ρσ ≡ Pμν

ρσ = 1

4
ḡμν ḡρσ .

(2.16)

The coefficients Vρλ and U are functions of the curvatures, V and 
Z N , for whose form we refer again to [24].

The “beta functional” of the theory is the sum of three contri-
butions coming from gravitons, ghosts and the new ghost bμ:

�̇k = T g + T gh + T Y . (2.17)

In order to write these terms more explicitly, we have to choose 
a cutoff for each of them. For a one-loop calculation, where the 
couplings in the r.h.s. of the equation are treated as fixed, it was 
most convenient to think of the cutoff as a function of the whole 
3

operator O, �gh or Y respectively (so-called type III cutoff). In this 
paper we will not ignore the running of the couplings that may be 
present in the cutoff, so it is best to minimize their presence. This 
is achieved by choosing the cutoff to be a function of � only (so-
called type I cutoff). The one-loop calculation with this cutoff has 
been done before in [35].

2.4. Graviton contribution

We choose the graviton cutoff to have the form R = K Rk(�
2), 

where Rk(�
2) = (k4 − �2)θ(k4 − �2) and we define as usual 

Pk(�
2) = �2 + Rk(�

2) = k4θ(k4 − �2). Note that it is convenient 
to view Rk as a function of �2, although of course one could also 
view it as a function of �. Then, writing the kinetic operator as 
�2 + V + U , the graviton contribution to the FRGE is

T g = 1

2
Tr

∂t[K Rk(�
2)]

K [O + Rk(�
2)] = 1

2
Tr

∂t Rk(�
2) + ηK Rk(�

2)

Pk(�
2) + V + U

, (2.18)

where we defined

ηK = K −1 dK

dt
. (2.19)

Note that ηK is a tensor. From (2.15) we find

ηK = η1I + ηPP , (2.20)

where

η1 = − λ̇

λ
, ηP = − ξ λ̇ − λξ̇

λ(3λ − ξ)
. (2.21)

We divide V and U into various terms: V = V 0 + V 1 and U =
U0 + U1 + U2, where the subscript counts the power of curvature, 
and the remaining dimension is carried either by V or Z N :

V 0 ∼ Z N∇∇ ; V 1 ∼ R∇∇ ; U0 ∼ V ;
U1 ∼ Z N R ; U2 ∼ R2 .

We now have to decide how to expand the fraction in (2.18). Since 
we want to compute the beta functions of all the couplings in (2.4), 
we need to expand to second order in curvatures. It would be nat-
ural to assume that 

√
V ∼ Z N ∼ R (which implies also � ∼ R), 

but such an expansion would miss important features, as we shall 
discuss below. It is possible without too much effort to keep the 
full dependence on V , and we shall do so. We will therefore not 
expand in U0. It is much harder to keep all dependence on Z N , 
therefore we will expand in V 0, V 1, U1 and U2, to first order in 
Z N/k2, independently of curvatures.2 This corresponds to consider-
ing a trans-Planckian regime. If one considers the Einstein-Hilbert 
part of the action, it correspond to a strong gravity expansion. See 
[37] for a recent discussion. Keeping only terms up to linear order 
in Z N we thus have to evaluate:

T grav = 1

2
Tr

[
∂t Rk(�) + ηK Rk(�)

Pk(�) + U0

×
(

1 − 1

Pk(�) + U0
(V 0 + V 1 + U1 + U2)

+ 1

Pk(�) + U0
V 0

1

Pk(�) + U0
V 1

+ 1

Pk(�) + U0
V 1

1

Pk(�) + U0
V 0

2 Note that we wrote V = 2ZN � and treated � as an independent coupling, the 
expansion in ZN would also entail and expansion in �. This is not what we do here.
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+ 2V 0U2

(Pk(�) + U0)2
+ V 2

1

(Pk(�) + U0)2
+ 2V 1U1

(Pk(�) + U0)2

+ 3V 0 V 2
1

(Pk(�) + U0)3

)]
. (2.22)

In the last two lines we have written the terms only in a schematic 
way, without paying attention to their order: to be precise one 
has to write out several terms where the projectors P appear in 
different positions. (For details, we refer the reader to the ancillary 
file on the arXiv page.)

2.5. Ghost contribution

To some extent, it is possible to treat �gh and Y together. Both 
operators are non-minimal, and of the form �δν

μ + σ ∇̄μ∇̄ν + Bν
μ

(note the overall sign is reversed), where σ is a constant defined in 
(2.12) and Bν

μ = sR̄ν
μ , where s = −1 for �gh and s = 1 for Y . In the 

standard one-loop calculations, one can use the known heat kernel 
coefficients for this type of operators. In contrast to [22–24] and 
coherently with the treatment of gravitons, we use a type I cutoff 
also for the ghosts. This type of cutoff for ghosts had been used 
before in [35]. The novelty of our calculation is that we also take 
into account the contributions due to the anomalous dimensions

ηgh = 0 , ηY = −βλ/λ . (2.23)

The type I cutoff has the form3

Rμ
k ν = Zδν

μRk(�), (2.24)

where Z is given by (2.9), (2.10). Adding the cutoff, the kinetic 
operator (aside from the factor Z ) becomes Pk(�)δν

μ + σ ∇̄μ∇̄ν +
Bν

μ . In the flow equation one needs the inverse of this operator. 
We refer to [35] for some technical details. The evaluation of the 
traces to second order in curvatures is rather laborious. In the end 
we arrive at the following

T gh = − 1

(4π)2

∫
d4x

√
ḡ

{[
3 − 2

σgh
− 2

σ 2
gh

log(1 − σgh)

]
k4

− 1

12σ 2
gh

[
3σgh(2 + σgh(7 − 5σgh))

σgh − 1

− 2(3 − 2σgh) log(1 − σgh)

]
k2 R̄

− 11

90
R̄2

μνρλ + 43 − 2σgh(13 + σgh)

45(1 − σgh)
2

R̄2
μν

+
[

5

18
+ 1

6(1 − σgh)
2

]
R̄2

}
. (2.25)

Note the appearance of log(1 − σgh) = − log(2(1 + ω)/3), which 
forces us to consider only the domain ω > −1. For Y :

T Y = −1

2

1

(4π)2

∫
d4x

√
ḡ

{[
3 − 2

σY
− 2

σ 2
Y

log(1 − σY )

+ ηY

(
2 − σY + σ 2

Y

2σ 2
Y

+ (1 − σY )

σ 3
Y

log(1 − σY )

)]
k4

+
[
−2 + σY

4σY
− 3 + 2σY

6σ 2
Y

log(1 − σY )

3 We observe that the calculation of the ghost contributions is considerably sim-
pler with a so-called type-II cutoff Rμ

kν = Zδ
μ
ν Rk(� + B). The use of this alternative 

scheme for the ghosts would lead to only small quantitative differences in the final 
results for the fixed points and we shall not discuss this in detail.
4

+ ηY

(
6 − σY

12σ 2
Y

+ 3 − 2σY − σ 2
Y

6σ 3
Y

log(1 − σY )

)]
k2 R̄

− 11

90

(
1 + ηY

2

)
R̄2

μνρλ +
[

43

45

+ ηY

(
20 − 20σY − 39σ 2

Y + 29σ 3
Y

120σ 2
Y (σY − 1)

− 1 − σY − 2σ 2
Y

12σ 3
Y

log(1 − σY )

)]
R̄2

μν

−
[

2

9
+ ηY

(
4 + σ 2

Y + σ 3
Y − 3σ 4

Y

48(−1 + σY )σ 2
Y

− 2 − σY − 2σ 2
Y

24σ 3
Y

log(1 − σ)

)]
R̄2

}
. (2.26)

Both agree with [35] if we put ηY = 0.

3. Results

3.1. Beta functions

For the study of the flow, the dimensionful couplings V and Z N

have to be replaced by their dimensionless counterparts Ṽ = V/k4

and Z̃ N = Z N/k2, or the related quantities G̃ = Gk2, �̃ = �/k2. The 
beta functions are too complicated to be written here (they are 
given in a Mathematica notebook [38]), but they simplify in two 
cases. Expanding for small λ we obtain the universal one-loop beta 
functions

βλ = − 133λ2

160π2
+ O

(
λ3) (3.1)

βω = −λ(200ω2 + 1098ω + 25)

960π2
+ O

(
λ2) (3.2)

βθ = 7(56 − 171θ)

1440π2
λ + O

(
λ2) (3.3)

while the non-universal beta functions for G̃ and �̃ agree with 
those found in the one-loop calculation [35] at λ = 0. Explicitly 
they are given by

βG̃ = 2G̃ + G̃2
[
− c1

72π(1 − 2ω)
+ c2 log(

2(1+ω)
3 )

12π(1 − 2ω)2

]
+ O (λ) (3.4)

β�̃ = −2�̃+ G̃

72π

[
c3 + �̃c4

1 − 2ω
+ 6(c5 + �̃c6) log(

2(1+ω)
3 )

(1 − 2ω)2

]
+ O (λ)

(3.5)

with the coefficients c1 = 35 − 2ω(109 + 176ω), c2 = 65 + 4ω(7 +
2ω), c3 = 162 − 540ω, c4 = −35 + 218ω + 352ω2, c5 = 6 − 96ω −
48ω2, c6 = 65 + 28ω + 8ω2.

Our calculation differs from one-loop calculations in that we 
take into account the anomalous dimensions. For example, we see 
ηY appearing explicitly in (2.26), which gives contributions to the 
beta functions of all the couplings. Equation (2.23) tells us that ηY

is proportional to βλ . Thus, comparing the terms proportional to 
C2 on both sides of the FRGE, we obtain a relation of the form 
βi = Bi + Cijβ j . At one loop one just keeps βi = Bi . Solving the 
algebraic equations gives beta functions that contain contributions 
with arbitrarily high loop order.

However, from the definitions, the anomalous dimensions at a 
fixed point are known a priori to be

η1 = 0 ; ηP = 0 ; ηY = 0 . (3.6)
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Table 1
Fixed points in the approximation Ṽ = 0.

λ∗ ξ∗ ρ∗ ω∗ Z̃N∗ G̃∗
FP1 0 0 0 −0.02286 0.00833 2.388
FP2 29.26 −220.2 0 0.4040 0.01318 1.509
FP3 52.61 1672 0 −0.0944 0.00761 2.614

So, in the search of fixed points, one can use simplified beta func-
tions where these values are used: the full expressions for the 
anomalous dimensions are only needed when one calculates the 
scaling exponents. It is easy to see that if we had assumed that all 
terms in V and U are of the same order, namely 

√
V ∼ Z N ∼ R , 

then all the terms containing V 0 and U1 would not contribute to 
the beta functions of λ, ξ and ρ . Therefore, these beta functions 
would not contain Z N and would be exactly the same as in [35]. 
This is why it is important to keep the expansion in Z N separate 
from the expansion in R .4

Even the simplified beta functions with (3.6) are too compli-
cated to be reported in detail. However, we shall see a posteriori 
that Ṽ is very small at fixed points. If we put Ṽ = 0, the equations 
for the remaining variables become simple enough:

βλ = − 133

160π2
λ2 + Z̃ Nλ3 251ξ − 58λ

120π2ξ
(3.7)

βξ = −5(72λ2 − 36λξ + ξ2)

576π2

+ Z̃ N
9720λ3 − 1980λ2ξ + 489λξ2 − 14ξ3

6480π2
(3.8)

βρ = − 49

180π2
ρ2 + Z̃ Nλρ2 233ξ − 58λ

240π2ξ
(3.9)

β Z̃N
=

(
−2 + (30λ − ξ)(4λ + ξ)

192π2ξ

)
Z̃ N

+ −3168λ2 + 654λξ + 35ξ2

1152π2ξ(6λ + ξ)

− 72λ2 − 84λξ + 65ξ2

192π2(6λ + ξ)2
log

(
2

3
− 2λ

ξ

)
. (3.10)

3.2. Fixed points

Now we recall that already in the one-loop calculation, the beta 
functions of Z̃ N (and also Ṽ ) have a nontrivial fixed point. This 
nonzero value of Z N enters in the beta functions of (3.7)-(3.9) in 
such a way that besides the asymptotically free fixed point, there 
are now two (and only two) new ones. Their coordinates are given 
in Table 1.

The first fixed point is found also in the one-loop approxima-
tion, and it is a non-trivial fact that it persists also when Z̃ N is 
present in the beta functions of λ and ξ .5 Note that in the one-loop 
approximation there is also another fixed point with λ = ξ = 0, 
ω = −5.467, which however is excluded by our condition ω > −1
(otherwise it gives a complex Z̃ N ). The remaining two fixed points 
are “fully interacting”. It is worth noting that if we treat Z̃ N as an 
external parameter in the beta functions of λ and ξ , we find that 
λ∗ and ξ∗ go to infinity for Z̃ N → 0.6

4 It would obviously be even better not to expand in ZN at all, but this would be 
technically much more challenging.

5 Actually, this fixed point is best studied using the variable ω instead of ξ . It 
corresponds to letting λ and ξ go to zero with a particular ratio, and is different 
from setting e.g. first λ = 0 and then ξ = 0.

6 and to zero for Z̃N → ∞, but this is outside the domain of our approximation.
5

We then come to the solution of the full flow equations, where 
we take into account also the running of Ṽ . There are now more 
fixed points, and we report in Table 2 the properties of the most 
interesting ones.

We see that in all cases the fixed point value of Ṽ is very small, 
justifying the earlier approximation V = 0. In fact, by considering 
only the beta functions of λ, ξ and Z̃ N , and treating Ṽ as a param-
eter, and letting this parameter vary between zero and 0.004575, 
or 0.006928, we can see that FP2 and FP3 change continuously 
from the values of Table 1 to those of Table 2. We may thus iden-
tify the first three fixed points of Table 2 with those of Table 1.

There are several other fixed points with λ = 0, of which FP4 is 
a representative example. We list it here for reasons that will be-
come clear later. There may also exist other non-trivial fixed points 
with λ 	= 0, but this would require a more extensive numerical 
search that we have not undertaken. Besides, these fixed points 
are probably artifacts of the truncation, as are known to occur in 
other similar cases.

We note that also Z̃ N∗ is small, and this justifies a posteriori
the expansion in Z̃ N that we used throughout our calculations. If 
we change variable from Z̃ N to G̃ N and set λ = 0, then as seen 
from (3.4) there is a fixed point at G̃ = 0. On the other hand, if we 
first set G̃ = 0, there is no acceptable fixed point for the dimen-
sionless couplings. In any case, since we have expanded in Z̃ N , 
any result near G̃ = 0 is unreliable. This is unfortunate, because it 
means that we cannot check whether there exists a RG trajectory 
joining one of the fixed points listed above to the standard weak 
gravity regime in the IR.

3.3. Scaling exponents

If we rescale the fluctution field hμν by a factor 
√

λ, so that the 
prefactor of its kinetic term is canonical, the fixed point FP1 is seen 
to be a Gaussian fixed point, and indeed we find that the scaling 
exponents are given by the canonical dimensions: 4, 2, 0, 0, 0. The 
scaling exponents of FP2, listed from more to less relevant, are

θ1,2 = 2.35191 ± 1.67715i , θ3 = 1.76672 ,

θ4 = 0 , θ5 = −3.20030 ,

while those of FP3 are

θ1,2 = 2.03270 ± 1.52155i , θ3 = 1.23742 ,

θ4 = 0 , θ5 = −5.27685 .

The marginal coupling is ρ , the (inverse of the) coefficient of 
the topological term. At the non-Gaussian fixed points, we find 
βρ = Aρ2 with A = 0.01736 at FP2 and A = 0.02258 at FP3. Thus, 
at both fixed points, ρ is marginally relevant when it is negative 
and marginally irrelevant when it is positive. We thus arrive at the 
conclusion that also in the present approximation, the dimension 
of the critical surface of pure gravity is three, up to the marginal 
topological term.

3.4. The a-function

The beta function of ρ is given by (2.6). In an ordinary CFT, the 
coefficient a appears in the trace anomaly as

〈
T μ

μ

〉 = 1

16π2

(
cCμνρσ Cμνρσ − aE

)
. (3.11)

For example, for a free theory with N S scalars, N f Dirac fields and 
NV gauge fields,
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Table 2
Selected fixed points including Ṽ .

λ∗ ξ∗ ρ∗ ω∗ Z̃N∗ Ṽ∗ G̃∗ �̃∗ a

FP1 0 0 0 −0.02286 0.00833 0.006487 2.388 0.3894 4.356
FP2 24.91 −287.1 0 0.2603 0.01635 0.004575 1.217 0.1399 −2.741
FP3 28.24 175.6 0 −0.4825 0.01499 0.006928 1.327 0.2310 −3.566
FP4 0 −312.2 0 0 0.009222 0.006092 2.157 0.3303 4.357
a = 1

360
(N S + 11N f + 62NV ) , c = 1

120
(N S + 6N f + 12NV ) .

(3.12)

According to the a-theorem, if there is a RG trajectory joining two 
fixed points, a is higher at the UV fixed point [39–41]. This accords 
to the intuition that a is a measure of the number of degrees of 
freedom of the theory. There is no known a-theorem for gravity. 
However, we can view our calculation as a quantum field theory 
in a curved background, and from this point of view the theorem 
should be applicable.7 At FP1 we have a = 196

45 . The values of a
at the other fixed points can be calculated numerically and are 
reported in the last column of Table 2.

Since FP2 and FP3 have a unique irrelevant direction, there is 
only one RG trajectory leaving these fixed points, that can be inte-
grated numerically in the direction of increasing t = log k and ends 
up (in the UV) at another fixed point. In this way we have found 
an RG trajectory that goes from FP1 to FP3 and one that goes from 
FP4 to FP2. The value of a decreases along these trajectories, in ac-
cordance with the theorem. On the other hand, all the fixed points 
with λ = 0 have very similar values of a and there is a trajectory 
that goes from FP4 to another fixed point with λ = 0 and a slightly 
larger value of a, in contradiction to the theorem. Since it is doubt-
ful that these additional fixed points do exist, the meaning of this 
result is not very clear, and will have to be investigated more care-
fully in the future.

3.5. Spectrum

The appearance of several non-trivial fixed points is not a nov-
elty in this kind of calculations. Several of these are likely to be 
spurious, but we do not see any reasons why FP1 or FP2 should 
be rejected a priori, or to prefer one over the other. Regarding 
the spectrum, we recall that in order to avoid tachyons in the 
expansion around flat space, the action for gravity in Lorentzian 
signature8 must have a negative Weyl squared term and a positive 
R2 term. A naive Wick rotation of the linearized action around flat 
space leads to a Lorentzian action that only differs from the Eu-
clidean one by an overall sign. Therefore, FP2 has the correct signs 
to avoid tachyons. Although this is not sufficient to guarantee a 
healthy theory, it gives us some more room in the search of one.

Note added: After this paper was submitted to the journal the 
work referred to in footnote 1 has appeared on the arXiv [44].
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