27,849 research outputs found

    Improved electro-optical tracking system

    Get PDF
    Electro-optical tracking system employs a laser beam illuminating source, an electronic laser beam deflector, and an image dissector photomultiplier. An electronic scanning transmitter and receiver follows rapid movements or accelerations of the target

    Evaluation of the micro-carburetor

    Get PDF
    A prototype sonic, variable-venturi automotive carburetor was evaluated for its effects on vehicle performance, fuel economy, and exhaust emissions. A 350 CID Chevrolet Impala vehicle was tested on a chassis dynamometer over the 1975 Federal Test Procedure, urban driving cycle. The Micro-carburetor was tested and compared with stock and modified-stock engine configurations. Subsequently, the test vehicle's performance characteristics were examined with the stock carburetor and again with the Micro-carburetor in a series of on-road driveability tests. The test engine was then removed from the vehicle and installed on an engine dynamometer. Engine tests were conducted to compare the fuel economy, thermal efficiency, and cylinder-to-cylinder mixture distribution of the Micro-carburetor to that of the stock configuration. Test results show increases in thermal efficiency and improvements in fuel economy at all test conditions. Improve fuel/air mixture preparation is implied from the information presented. Further improvements in fuel economy and exhaust emissions are possible through a detailed recalibration of the Micro-carburetor

    Modelling CO emission from hydrodynamic simulations of nearby spirals, starbursting mergers, and high-redshift galaxies

    Get PDF
    We model the intensity of emission lines from the CO molecule, based on hydrodynamic simulations of spirals, mergers, and high-redshift galaxies with very high resolutions (3pc and 10^3 Msun) and detailed models for the phase-space structure of the interstellar gas including shock heating, stellar feedback processes and galactic winds. The simulations are analyzed with a Large Velocity Gradient (LVG) model to compute the local emission in various molecular lines in each resolution element, radiation transfer and opacity effects, and the intensity emerging from galaxies, to generate synthetic spectra for various transitions of the CO molecule. This model reproduces the known properties of CO spectra and CO-to-H2 conversion factors in nearby spirals and starbursting major mergers. The high excitation of CO lines in mergers is dominated by an excess of high-density gas, and the high turbulent velocities and compression that create this dense gas excess result in broad linewidths and low CO intensity-to-H2 mass ratios. When applied to high-redshift gas-rich disks galaxies, the same model predicts that their CO-to-H2 conversion factor is almost as high as in nearby spirals, and much higher than in starbursting mergers. High-redshift disk galaxies contain giant star-forming clumps that host a high-excitation component associated to gas warmed by the spatially-concentrated stellar feedback sources, although CO(1-0) to CO(3-2) emission is overall dominated by low-excitation gas around the densest clumps. These results overall highlight a strong dependence of CO excitation and the CO-to-H2 conversion factor on galaxy type, even at similar star formation rates or densities. The underlying processes are driven by the interstellar medium structure and turbulence and its response to stellar feedback, which depend on global galaxy structure and in turn impact the CO emission properties.Comment: A&A in pres

    A Kiloparsec-Scale Hyper-Starburst in a Quasar Host Less than 1 Gigayear after the Big Bang

    Full text link
    The host galaxy of the quasar SDSS J114816.64+525150.3 (at redshift z=6.42, when the Universe was <1 billion years old) has an infrared luminosity of 2.2x10^13 L_sun, presumably significantly powered by a massive burst of star formation. In local examples of extremely luminous galaxies such as Arp220, the burst of star formation is concentrated in the relatively small central region of <100pc radius. It is unknown on which scales stars are forming in active galaxies in the early Universe, which are likely undergoing their initial burst of star formation. We do know that at some early point structures comparable to the spheroidal bulge of the Milky Way must have formed. Here we report a spatially resolved image of [CII] emission of the host galaxy of J114816.64+525150.3 that demonstrates that its star forming gas is distributed over a radius of ~750pc around the centre. The surface density of the star formation rate averaged over this region is ~1000 M_sun/yr/kpc^2. This surface density is comparable to the peak in Arp220, though ~2 orders of magnitudes larger in area. This vigorous star forming event will likely give rise to a massive spheroidal component in this system.Comment: Nature, in press, Feb 5 issue, p. 699-70

    Ratchet effect in dc SQUIDs

    Full text link
    We analyzed voltage rectification for dc SQUIDs biased with ac current with zero mean value. We demonstrate that the reflection symmetry in the 2-dimensional SQUID potential is broken by an applied flux and with appropriate asymmetries in the dc SQUID. Depending on the type of asymmetry, we obtain a rocking or a simultaneously rocking and flashing ratchet, the latter showing multiple sign reversals in the mean voltage with increasing amplitude of the ac current. Our experimental results are in agreement with numerical solutions of the Langevin equations for the asymmetric dc SQUID.Comment: 10 pages including 5 Postscript figure

    Characterization of solar cells for space applications. Volume 5: Electrical characteristics of OCLI 225-micron MLAR wraparound cells as a function of intensity, temperature, and irradiation

    Get PDF
    Computed statistical averages and standard deviations with respect to the measured cells for each intensity temperature measurement condition are presented. Display averages and standard deviations of the cell characteristics in a two dimensional array format are shown: one dimension representing incoming light intensity, and another, the cell temperature. Programs for calculating the temperature coefficients of the pertinent cell electrical parameters are presented, and postirradiation data are summarized

    Visualization design and verification of Ada tasking using timing diagrams

    Get PDF
    The use of timing diagrams is recommended in the design and testing of multi-task Ada programs. By displaying the task states vs. time, timing diagrams can portray the simultaneous threads of data flow and control which characterize tasking programs. This description of the system's dynamic behavior from conception to testing is a necessary adjunct to other graphical techniques, such as structure charts, which essentially give a static view of the system. A series of steps is recommended which incorporates timing diagrams into the design process. Finally, a description is provided of a prototype Ada Execution Analyzer (AEA) which automates the production of timing diagrams from VAX/Ada debugger output

    Characterization of solar cells for space applications. Volume 14: Electrical characteristics of Hughes liquid phase epitaxy gallium arsenide solar cells as a function of intensity, temperature and irradiation

    Get PDF
    Electrical characteristics of liquid phase epitaxy, P/N gallium aluminum arsenide solar cells are presented in graphical and tabular format as a function of solar illumination intensity and temperature. The solar cells were exposed to 1 MeV electron fluences of, respectively, 0, one hundred trillion, one quadrillion, and ten quadrillion e/sq cm

    Imaging Pauli repulsion in scanning tunneling microscopy

    Get PDF
    A scanning tunneling microscope (STM) has been equipped with a nanoscale force sensor and signal transducer composed of a single D2 molecule that is confined in the STM junction. The uncalibrated sensor is used to obtain ultra-high geometric image resolution of a complex organic molecule adsorbed on a noble metal surface. By means of conductance-distance spectroscopy and corresponding density functional calculations the mechanism of the sensor/transducer is identified. It probes the short-range Pauli repulsion and converts this signal into variations of the junction conductance.Comment: 4 pages, 4 figures, accepted to Phys. Rev. Let
    • …
    corecore