3,003 research outputs found

    Voyager cartography

    Get PDF
    The Jovian and Saturnian satellites are being mapped at several scales from Voyager 1 and 2 data. The maps are especially formatted color mosaics, controlled photomosaics, and airbrush maps. At 1:5,000,000 scale, mapping of Io, Europa, and Ganymede is complete. At 1:15,000,000 scale, mapping of Io and Europa is complete, and mapping of Ganymede is approximately complete. A controlled mosaic of Rhea has been compiled as a Digital Image Model (DIM) in the same format as is being used for Mars. The mosaic is being formatted for publication as a two-sheet set (Lambert Azimuthal Equal Area, Mercator, and Polar Stereographic projections). Magnetic tape copies of the DIM have been distributed to regional Planetary Image Facilities and other interested users. The DIM has a scale of 1/16 degree/pixel, corresponding to approximately 833 m/pixel on Rhea. Details of the status of the various map series are reported quarterly to Planetary Geology Principal Investigators

    Low temperature shape relaxation of 2-d islands by edge diffusion

    Full text link
    We present a precise microscopic description of the limiting step for low temperature shape relaxation of two dimensional islands in which activated diffusion of particles along the boundary is the only mechanism of transport allowed. In particular, we are able to explain why the system is driven irreversibly towards equilibrium. Based on this description, we present a scheme for calculating the duration of the limiting step at each stage of the relaxation process. Finally, we calculate numerically the total relaxation time as predicted by our results and compare it with simulations of the relaxation process.Comment: 11 pages, 5 figures, to appear in Phys. Rev.

    Numerical study of domain coarsening in anisotropic stripe patterns

    Full text link
    We study the coarsening of two-dimensional smectic polycrystals characterized by grains of oblique stripes with only two possible orientations. For this purpose, an anisotropic Swift-Hohenberg equation is solved. For quenches close enough to the onset of stripe formation, the average domain size increases with time as t1/2t^{1/2}. Further from onset, anisotropic pinning forces similar to Peierls stresses in solid crystals slow down defects, and growth becomes anisotropic. In a wide range of quench depths, dislocation arrays remain mobile and dislocation density roughly decays as t1/3t^{-1/3}, while chevron boundaries are totally pinned. We discuss some agreements and disagreements found with recent experimental results on the coarsening of anisotropic electroconvection patterns.Comment: 8 pages, 11 figures. Phys. Rev E, to appea

    An FPGA-Based System for Tracking Digital Information Transmitted Via Peer-to-Peer Protocols

    Get PDF
    This paper presents a Field Programmable Gate Array (FPGA)-based tool designed to process file transfers using the BitTorrent Peer-to-Peer (P2P) protocol and VoIP phone calls made using the Session Initiation Protocol (SIP). The tool searches selected control messages in real time and compares the unique identifier of the shared file or phone number against a list of known contraband files or phone numbers. Results show the FPGA tool processes P2P packets of interest 92% faster than a software-only configuration and is 97.6% accurate at capturing and processing messages at a traffic load of 89.6 Mbps

    Changing shapes in the nanoworld

    Full text link
    What are the mechanisms leading to the shape relaxation of three dimensional crystallites ? Kinetic Monte Carlo simulations of fcc clusters show that the usual theories of equilibration, via atomic surface diffusion driven by curvature, are verified only at high temperatures. Below the roughening temperature, the relaxation is much slower, kinetics being governed by the nucleation of a critical germ on a facet. We show that the energy barrier for this step linearly increases with the size of the crystallite, leading to an exponential dependence of the relaxation time.Comment: 4 pages, 5 figures. Accepted by Phys Rev Let

    Smart Eco-CityDevelopment in Europe and China: Opportunities, Drivers and Challenges

    Get PDF
    The policy pointers presented in this report are the result of a three-year (2015-18) research project led by Federico Caprotti at the University of Exeter. The project, Smart Eco-Cities for a Green Economy: A Comparative Analysis of Europe and China, was delivered by a research consortium comprising scholars and researchers in the UK, China, the Netherlands, France, and Germany. The aim of the project was to investigate the way in which smart city and eco-city strategies are used to enable a transition towards digital and green economies. While previous work has considered smart cities and eco-cities as separate urban development models, the project considers them together for the first time. We use the term ‘the smart eco-city’ to focus on how green targets are now included in smart city development policies and strategies. This report presents a summary of policy pointers, or ‘lessons’, learned through our work on the cities we studied in the UK, China, the Netherlands, France and Germany. Specifically, we studied, in depth, the cities of Manchester, Amsterdam, Hamburg, Bordeaux, Shanghai, Shenzhen, Ningbo and Wuhan. This work included interviews with policymakers, urban municipal authorities, tech firm executives, and grassroots and community representatives and stakeholders. Our work also included intensive and in-depth qualitative analysis of documentary sources including policy and corporate reports and other materials.The research undertaken to produce this report was supported by funding from: the Economic and Social Research Council (ESRC) through research grant ES/ L015978/1; the National Natural Science Foundation of China, project number 71461137005; the Netherlands Organisation for Scientific Research (NWO) through research grant 467-14-153 and the Dutch Academy of Sciences (KNAW) through research grant 530-6CD108; the French National Research Agency (ANR) through research grant ANR-14-02; and the German Research Foundation DFG through research grant SP 1545/1-1

    Growth Kinetics in a Phase Field Model with Continuous Symmetry

    Full text link
    We discuss the static and kinetic properties of a Ginzburg-Landau spherically symmetric O(N)O(N) model recently introduced (Phys. Rev. Lett. {\bf 75}, 2176, (1995)) in order to generalize the so called Phase field model of Langer. The Hamiltonian contains two O(N)O(N) invariant fields ϕ\phi and UU bilinearly coupled. The order parameter field ϕ\phi evolves according to a non conserved dynamics, whereas the diffusive field UU follows a conserved dynamics. In the limit NN \to \infty we obtain an exact solution, which displays an interesting kinetic behavior characterized by three different growth regimes. In the early regime the system displays normal scaling and the average domain size grows as t1/2t^{1/2}, in the intermediate regime one observes a finite wavevector instability, which is related to the Mullins-Sekerka instability; finally, in the late stage the structure function has a multiscaling behavior, while the domain size grows as t1/4t^{1/4}.Comment: 9 pages RevTeX, 9 figures included, files packed with uufiles to appear on Phy. Rev.

    Evaluation of variants in the selectin genes in age-related macular degeneration

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Age-related macular degeneration (AMD) is a common disease of the elderly that leads to loss of the central visual field due to atrophic or neovascular events. Evidence from human eyes and animal models suggests an important role for macrophages and endothelial cell activation in the pathogenesis of AMD. We sought to determine whether common ancestral variants in genes encoding the selectin family of proteins are associated with AMD.</p> <p>Methods</p> <p>Expression of E-selectin, L-selectin and P-selectin was examined in choroid and retina by quantitative PCR and immunofluorescence. Samples from patients with AMD (n = 341) and controls (n = 400) were genotyped at a total of 34 SNPs in the <it>SELE</it>, <it>SELL </it>and <it>SELP </it>genes. Allele and genotype frequencies at these SNPs were compared between AMD patients and controls as well as between subtypes of AMD (dry, geographic atrophy, and wet) and controls.</p> <p>Results</p> <p>High expression of all three selectin genes was observed in the choroid as compared to the retina. Some selectin labeling of retinal microglia, drusen cores and the choroidal vasculature was observed. In the genetic screen of AMD versus controls, no positive associations were observed for <it>SELE </it>or <it>SELL</it>. One SNP in <it>SELP </it>(rs3917751) produced p-values < 0.05 (uncorrected for multiple measures). In the subtype analyses, 6 SNPs (one in <it>SELE</it>, two in <it>SELL</it>, and three in <it>SELP</it>) produced p-values < 0.05. However, when adjusted for multiple measures with a Bonferroni correction, only one SNP in <it>SELP </it>(rs3917751) produced a statistically significant p-value (p = 0.0029).</p> <p>Conclusions</p> <p>This genetic screen did not detect any SNPs that were highly associated with AMD affection status overall. However, subtype analysis showed that a single SNP located within an intron of <it>SELP </it>(rs3917751) is statistically associated with dry AMD in our cohort. Future studies with additional cohorts and functional assays will clarify the biological significance of this discovery. Based on our findings, it is unlikely that common ancestral variants in the other selectin genes (<it>SELE </it>and <it>SELL</it>) are risk factors for AMD. Finally, it remains possible that sporadic or rare mutations in <it>SELE</it>, <it>SELL</it>, or <it>SELP </it>have a role in the pathogenesis of AMD.</p

    Instability driven fragmentation of nanoscale fractal islands

    Full text link
    Formation and evolution of fragmentation instabilities in fractal islands, obtained by deposition of silver clusters on graphite, are studied. The fragmentation dynamics and subsequent relaxation to the equilibrium shapes are controlled by the deposition conditions and cluster composition. Sharing common features with other materials' breakup phenomena, the fragmentation instability is governed by the length-to-width ratio of the fractal arms.Comment: 5 pages, 3 figures, Physical Review Letters in pres
    corecore