392 research outputs found

    Exceptional-point-based optical amplifiers

    Get PDF
    The gain-bandwidth product is a fundamental figure of merit that restricts the operation of optical amplifiers. Here, we introduce a design paradigm based on exceptional points, which relaxes this limitation and allows for the building of a new generation of optical amplifiers that exhibits a better gain-bandwidth scaling. Additionally, our results can be extended to other physical systems such as acoustics and microwaves

    Recommendations for Future Efforts in RANS Modeling and Simulation

    Get PDF
    The roadmap laid out in the CFD Vision 2030 document suggests that a decision to move away from RANS research needs to be made in the current timeframe (around 2020). This paper outlines industry requirements for improved predictions of turbulent flows and the cost-barrier that is often associated with reliance on scale resolving methods. Capabilities of RANS model accuracy for simple and complex flow flow fields are assessed, and modeling practices that degrade predictive accuracy are identified. Suggested research topics are identified that have the potential to improve the applicability and accuracy of RANS models. We conclude that it is important that some part of a balanced turbulence modeling research portfolio should include RANS efforts

    Nonuniversality of quantum noise in optical amplifiers operating at exceptional points

    Get PDF
    The concept of exceptional points-based optical amplifiers (EPOAs) has been recently proposed as a new paradigm for miniaturizing optical amplifiers while simultaneously enhancing their gain-bandwidth product. While the operation of this new family of amplifiers in the classical domain provides a clear advantage, their performance in the quantum domain has not yet been evaluated. Particularly, it is not clear how the quantum noise introduced by vacuum fluctuations will affect their operation. Here, we investigate this problem by considering three archetypal EPOA structures that rely either on unidirectional coupling, parity-time symmetry, or particle-hole symmetry for implementing the exceptional point. By using the Heisenberg-Langevin formalism, we calculate the added quantum noise in each of these devices and compare it with that of a quantum-limited amplifier scheme that does not involve any exceptional points. Our analysis reveals several interesting results: most notably that while the quantum noise of certain EPOAs can be comparable to those associated with conventional amplifier systems, in general the noise does not follow a universal scaling as a function of the exceptional point but rather varies from one implementation to another

    Nonuniversality of quantum noise in optical amplifiers operating at exceptional points

    Get PDF
    The concept of exceptional points-based optical amplifiers (EPOAs) has been recently proposed as a new paradigm for miniaturizing optical amplifiers while simultaneously enhancing their gain-bandwidth product. While the operation of this new family of amplifiers in the classical domain provides a clear advantage, their performance in the quantum domain has not yet been evaluated. Particularly, it is not clear how the quantum noise introduced by vacuum fluctuations will affect their operation. Here, we investigate this problem by considering three archetypal EPOA structures that rely either on unidirectional coupling, parity-time symmetry, or particle-hole symmetry for implementing the exceptional point. By using the Heisenberg-Langevin formalism, we calculate the added quantum noise in each of these devices and compare it with that of a quantum-limited amplifier scheme that does not involve any exceptional points. Our analysis reveals several interesting results: most notably that while the quantum noise of certain EPOAs can be comparable to those associated with conventional amplifier systems, in general the noise does not follow a universal scaling as a function of the exceptional point but rather varies from one implementation to another

    Nonuniversality of quantum noise in optical amplifiers operating at exceptional points

    Get PDF
    The concept of exceptional points-based optical amplifiers (EPOAs) has been recently proposed as a new paradigm for miniaturizing optical amplifiers while simultaneously enhancing their gain-bandwidth product. While the operation of this new family of amplifiers in the classical domain provides a clear advantage, their performance in the quantum domain has not yet been evaluated. Particularly, it is not clear how the quantum noise introduced by vacuum fluctuations will affect their operation. Here, we investigate this problem by considering three archetypal EPOA structures that rely either on unidirectional coupling, parity-time symmetry, or particle-hole symmetry for implementing the exceptional point. By using the Heisenberg-Langevin formalism, we calculate the added quantum noise in each of these devices and compare it with that of a quantum-limited amplifier scheme that does not involve any exceptional points. Our analysis reveals several interesting results: most notably that while the quantum noise of certain EPOAs can be comparable to those associated with conventional amplifier systems, in general the noise does not follow a universal scaling as a function of the exceptional point but rather varies from one implementation to another

    On-chip non-reciprocal optical devices based on quantum inspired photonic lattices

    Get PDF
    We propose a novel geometry for integrated photonic devices that can be used as isolators and polarization splitters based on engineered photonic lattices. Starting from optical waveguide arrays that mimic Fock space representation of a non-interacting two-site Bose Hubbard Hamiltonian, we show that introducing magneto-optic nonreciprocity to these structures leads to a superior optical isolation performance. In the forward propagation direction, an input TM polarized beam experiences a perfect state transfer between the input and output waveguide channels while surface Bloch oscillations block the backward transmission between the same ports. Our analysis indicates a large isolation ratio of 75 dB after a propagation distance of 8 mm inside seven coupled waveguides. Moreover, we demonstrate that, a judicious choice of the nonreciprocity in this same geometry can lead to perfect polarization splitting.Comment: 13 pages 3 figure

    Light transport in PT-invariant photonic structures with hidden symmetries

    Get PDF
    We introduce a recursive bosonic quantization technique for generating classical PT photonic structures that possess hidden symmetries and higher order exceptional points. We study light transport in these geometries and we demonstrate that perfect state transfer is possible only for certain initial conditions. Moreover, we show that for the same propagation direction, left and right coherent transports are not symmetric with field amplitudes following two different trajectories. A general scheme for identifying the conservation laws in such PT-symmetric photonic networks is also presented

    Dynamics of a nano-scale rotor driven by single-electron tunneling

    Full text link
    We investigate theoretically the dynamics and the charge transport properties of a rod-shaped nano-scale rotor, which is driven by a similar mechanism as the nanomechanical single-electron transistor (NEMSET). We show that a static electric potential gradient can lead to self-excitation of oscillatory or continuous rotational motion. The relevant parameters of the device are identified and the dependence of the dynamics on these parameters is studied. We further discuss how the dynamics is related to the measured current through the device. Notably, in the oscillatory regime, we find a negative differential conductance. The current-voltage characteristics can be used to infer details of the surrounding environment which is responsible for damping

    Excitation dynamics in polyacene molecules on rare-gas clusters

    Get PDF
    Laser-induced fluorescence spectra and excitation lifetimes of anthracene, tetracene, and pentacene molecules attached to the surface of solid argon clusters have been measured with respect to cluster size, density of molecules, and excitation density. Results are compared to previous studies on the same sample molecules attached to neon clusters. A contrasting lifetime behavior of anthracene on neon and argon clusters is discussed, and mechanisms are suggested to interpret the results. Although both neon and argon clusters are considered to be weakly interacting environments, we find that the excitation decay dynamics of the studied acenes depends significantly on the cluster material. Moreover, we find even qualitative differences regarding the dependence on the dopant density. Based on these observations, previous assignments of collective radiative and non-radiative decay mechanisms are discussed in the context of the new experimental findings.& nbsp;(c) 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/)
    • …
    corecore