5,787 research outputs found

    Noncommutative General Relativity

    Get PDF
    We define a theory of noncommutative general relativity for canonical noncommutative spaces. We find a subclass of general coordinate transformations acting on canonical noncommutative spacetimes to be volume-preserving transformations. Local Lorentz invariance is treated as a gauge theory with the spin connection field taken in the so(3,1) enveloping algebra. The resulting theory appears to be a noncommutative extension of the unimodular theory of gravitation. We compute the leading order noncommutative correction to the action and derive the noncommutative correction to the equations of motion of the weak gravitation field.Comment: v2: 10 pages, Discussion on noncommutative coordinate transformations has been changed. Corresponding changes have been made throughout the pape

    Cosmological Constant and Noncommutative Spacetime

    Full text link
    We show that the cosmological constant appears as a Lagrange multiplier if nature is described by a canonical noncommutative spacetime. It is thus an arbitrary parameter unrelated to the action and thus to vacuum fluctuations. The noncommutative algebra restricts general coordinate transformations to four-volume preserving noncommutative coordinate transformations. The noncommutative gravitational action is thus an unimodular noncommutative gravity. We show that spacetime noncommutativity provides a very natural justification to an unimodular gravity solution to the cosmological problem. We obtain the right order of magnitude for the critical energy density of the universe if we assume that the scale for spacetime noncommutativity is the Planck scale.Comment: 7 page

    Gravity-Yang-Mills-Higgs unification by enlarging the gauge group

    Full text link
    We revisit an old idea that gravity can be unified with Yang-Mills theory by enlarging the gauge group of gravity formulated as gauge theory. Our starting point is an action that describes a generally covariant gauge theory for a group G. The Minkowski background breaks the gauge group by selecting in it a preferred gravitational SU(2) subgroup. We expand the action around this background and find the spectrum of linearized theory to consist of the usual gravitons plus Yang-Mills fields charged under the centralizer of the SU(2) in G. In addition, there is a set of Higgs fields that are charged both under the gravitational and Yang-Mills subgroups. These fields are generically massive and interact with both gravity and Yang-Mills sector in the standard way. The arising interaction of the Yang-Mills sector with gravity is also standard. Parameters such as the Yang-Mills coupling constant and Higgs mass arise from the potential function defining the theory. Both are realistic in the sense explained in the paper.Comment: 61 pages, no figures (v2) some typos correcte

    Two-dimensional gravity with a dynamical aether

    Get PDF
    We investigate the two-dimensional behavior of gravity coupled to a dynamical unit timelike vector field, i.e. "Einstein-aether theory". The classical solutions of this theory in two dimensions depend on one coupling constant. When this coupling is positive the only solutions are (i) flat spacetime with constant aether, (ii) de Sitter or anti-de Sitter spacetimes with a uniformly accelerated unit vector invariant under a two-dimensional subgroup of SO(2,1) generated by a boost and a null rotation, and (iii) a non-constant curvature spacetime that has no Killing symmetries and contains singularities. In this case the sign of the curvature is determined by whether the coupling is less or greater than one. When instead the coupling is negative only solutions (i) and (iii) are present. This classical study of the behavior of Einstein-aether theory in 1+1 dimensions may provide a starting point for further investigations into semiclassical and fully quantum toy models of quantum gravity with a dynamical preferred frame.Comment: 11 pages, 4 figure

    On the Trace-Free Einstein Equations as a Viable Alternative to General Relativity

    Full text link
    The quantum field theoretic prediction for the vacuum energy density leads to a value for the effective cosmological constant that is incorrect by between 60 to 120 orders of magnitude. We review an old proposal of replacing Einstein's Field Equations by their trace-free part (the Trace-Free Einstein Equations), together with an independent assumption of energy--momentum conservation by matter fields. While this does not solve the fundamental issue of why the cosmological constant has the value that is observed cosmologically, it is indeed a viable theory that resolves the problem of the discrepancy between the vacuum energy density and the observed value of the cosmological constant. However, one has to check that, as well as preserving the standard cosmological equations, this does not destroy other predictions, such as the junction conditions that underlie the use of standard stellar models. We confirm that no problems arise here: hence, the Trace-Free Einstein Equations are indeed viable for cosmological and astrophysical applications.Comment: Substantial changes from v1 including added author, change of title and emphasis of the paper although all original results of v1. remai

    Vortices in fermion droplets with repulsive dipole-dipole interactions

    Full text link
    Vortices are found in a fermion system with repulsive dipole-dipole interactions, trapped by a rotating quasi-two-dimensional harmonic oscillator potential. Such systems have much in common with electrons in quantum dots, where rotation is induced via an external magnetic field. In contrast to the Coulomb interactions between electrons, the (externally tunable) anisotropy of the dipole-dipole interaction breaks the rotational symmetry of the Hamiltonian. This may cause the otherwise rotationally symmetric exact wavefunction to reveal its internal structure more directly.Comment: 5 pages, 5 figure

    Spin-3 Chromium Bose-Einstein Condensates

    Full text link
    We analyze the physics of spin-3 Bose-Einstein condensates, and in particular the new physics expected in on-going experiments with condensates of Chromium atoms. We first discuss the ground-state properties, which, depending on still unknown Chromium parameters, and for low magnetic fields can present various types of phases. We also discuss the spinor-dynamics in Chromium spinor condensates, which present significant qualitative differences when compared to other spinor condensates. In particular, dipole-induced spin relaxation may lead for low magnetic fields to transfer of spin into angular momentum similar to the well-known Einstein-de Haas effect. Additionally, a rapid large transference of population between distant magnetic states becomes also possible.Comment: 4 pages, 3 eps figures. Error in the previous version correcte

    Alternative derivation of the relativistic contribution to perihelic precession

    Full text link
    An alternative derivation of the first-order relativistic contribution to perihelic precession is presented. Orbital motion in the Schwarzschild geometry is considered in the Keplerian limit, and the orbit equation is derived for approximately elliptical motion. The method of solution makes use of coordinate transformations and the correspondence principle, rather than the standard perturbative approach. The form of the resulting orbit equation is similar to that derived from Newtonian mechanics and includes first-order corrections to Kepler's orbits due to general relativity. The associated relativistic contribution to perihelic precession agrees with established first-order results. The reduced radius for the circular orbit is in agreement to first-order with that calculated from the Schwarzschild effective potential. The method of solution is understandable by undergraduate students.Comment: 12 pages, 2 figures. Accepted for publication in the American Journal of Physic

    On the interaction of a single-photon wave packet with an excited atom

    Full text link
    The interaction of a single-photon wave packet with an initially excited two-level atom in free space is studied in semiclassical and quantum approaches. It is shown that the final state of the field does not contain doubly occupied modes. The process of the atom's transition to the ground state may be accelerated, decelerated or even reversed by the incoming photon, depending on parameters. The spectrum of emitted radiation is close to the sum of the spectrum of the incoming single-photon wave packet and the natural line shape, with small and complicated deviations.Comment: 17 pages, 5 figure
    • …
    corecore