research

Alternative derivation of the relativistic contribution to perihelic precession

Abstract

An alternative derivation of the first-order relativistic contribution to perihelic precession is presented. Orbital motion in the Schwarzschild geometry is considered in the Keplerian limit, and the orbit equation is derived for approximately elliptical motion. The method of solution makes use of coordinate transformations and the correspondence principle, rather than the standard perturbative approach. The form of the resulting orbit equation is similar to that derived from Newtonian mechanics and includes first-order corrections to Kepler's orbits due to general relativity. The associated relativistic contribution to perihelic precession agrees with established first-order results. The reduced radius for the circular orbit is in agreement to first-order with that calculated from the Schwarzschild effective potential. The method of solution is understandable by undergraduate students.Comment: 12 pages, 2 figures. Accepted for publication in the American Journal of Physic

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 02/01/2020