We report a study of the rotational dynamics in double-walled nanotubes using
molecular dynamics simulations and a simple analytical model reproducing very
well the observations. We show that the dynamic friction is linear in the
angular velocity for a wide range of values. The molecular dynamics simulations
show that for large enough systems the relaxation time takes a constant value
depending only on the interlayer spacing and temperature. Moreover, the
friction force increases linearly with contact area, and the relaxation time
decreases with the temperature with a power law of exponent −1.53±0.04.Comment: submitted to PR