157 research outputs found

    Dynamics of stripe patterns in type-I superconductors subject to a rotating field

    Full text link
    The evolution of stripe patterns in type-I superconductors subject to a rotating in-plane magnetic field is investigated magneto-optically. The experimental results reveal a very rich and interesting behavior of the patterns. For small rotation angles, a small parallel displacement of the main part of the stripes and a co-rotation of their very ends is observed. For larger angles, small sideward protrusions develop, which then generate a zigzag instability, ultimately leading to a breaking of stripes into smaller segments. The short segments then start to co-rotate with the applied field although they lag behind by approximately 10∘10^\circ. Very interestingly, if the rotation is continued, also reconnection of segments into longer stripes takes place. These observations demonstrate the importance of pinning in type-I superconductors.Comment: To appear in Phys. Rev.

    The Nikolaevskiy equation with dispersion

    Full text link
    The Nikolaevskiy equation was originally proposed as a model for seismic waves and is also a model for a wide variety of systems incorporating a neutral, Goldstone mode, including electroconvection and reaction-diffusion systems. It is known to exhibit chaotic dynamics at the onset of pattern formation, at least when the dispersive terms in the equation are suppressed, as is commonly the practice in previous analyses. In this paper, the effects of reinstating the dispersive terms are examined. It is shown that such terms can stabilise some of the spatially periodic traveling waves; this allows us to study the loss of stability and transition to chaos of the waves. The secondary stability diagram (Busse balloon) for the traveling waves can be remarkably complicated.Comment: 24 pages; accepted for publication in Phys. Rev.

    Long-Time Asymptotics for the Korteweg-de Vries Equation via Nonlinear Steepest Descent

    Full text link
    We apply the method of nonlinear steepest descent to compute the long-time asymptotics of the Korteweg-de Vries equation for decaying initial data in the soliton and similarity region. This paper can be viewed as an expository introduction to this method.Comment: 31 page

    Reformulating the Schrodinger equation as a Shabat-Zakharov system

    Full text link
    We reformulate the second-order Schrodinger equation as a set of two coupled first order differential equations, a so-called "Shabat-Zakharov system", (sometimes called a "Zakharov-Shabat" system). There is considerable flexibility in this approach, and we emphasise the utility of introducing an "auxiliary condition" or "gauge condition" that is used to cut down the degrees of freedom. Using this formalism, we derive the explicit (but formal) general solution to the Schrodinger equation. The general solution depends on three arbitrarily chosen functions, and a path-ordered exponential matrix. If one considers path ordering to be an "elementary" process, then this represents complete quadrature, albeit formal, of the second-order linear ODE.Comment: 18 pages, plain LaTe

    Negaton and Positon Solutions of the KDV Equation

    Full text link
    We give a systematic classification and a detailed discussion of the structure, motion and scattering of the recently discovered negaton and positon solutions of the Korteweg-de Vries equation. There are two distinct types of negaton solutions which we label [Sn][S^{n}] and [Cn][C^{n}], where (n+1)(n+1) is the order of the Wronskian used in the derivation. For negatons, the number of singularities and zeros is finite and they show very interesting time dependence. The general motion is in the positive xx direction, except for certain negatons which exhibit one oscillation around the origin. In contrast, there is just one type of positon solution, which we label [C~n][\tilde C^n]. For positons, one gets a finite number of singularities for nn odd, but an infinite number for even values of nn. The general motion of positons is in the negative xx direction with periodic oscillations. Negatons and positons retain their identities in a scattering process and their phase shifts are discussed. We obtain a simple explanation of all phase shifts by generalizing the notions of ``mass" and ``center of mass" to singular solutions. Finally, it is shown that negaton and positon solutions of the KdV equation can be used to obtain corresponding new solutions of the modified KdV equation.Comment: 20 pages plus 12 figures(available from authors on request),Latex fil

    Existence and stability of hole solutions to complex Ginzburg-Landau equations

    Full text link
    We consider the existence and stability of the hole, or dark soliton, solution to a Ginzburg-Landau perturbation of the defocusing nonlinear Schroedinger equation (NLS), and to the nearly real complex Ginzburg-Landau equation (CGL). By using dynamical systems techniques, it is shown that the dark soliton can persist as either a regular perturbation or a singular perturbation of that which exists for the NLS. When considering the stability of the soliton, a major difficulty which must be overcome is that eigenvalues may bifurcate out of the continuous spectrum, i.e., an edge bifurcation may occur. Since the continuous spectrum for the NLS covers the imaginary axis, and since for the CGL it touches the origin, such a bifurcation may lead to an unstable wave. An additional important consideration is that an edge bifurcation can happen even if there are no eigenvalues embedded in the continuous spectrum. Building on and refining ideas first presented in Kapitula and Sandstede (Physica D, 1998) and Kapitula (SIAM J. Math. Anal., 1999), we show that when the wave persists as a regular perturbation, at most three eigenvalues will bifurcate out of the continuous spectrum. Furthermore, we precisely track these bifurcating eigenvalues, and thus are able to give conditions for which the perturbed wave will be stable. For the NLS the results are an improvement and refinement of previous work, while the results for the CGL are new. The techniques presented are very general and are therefore applicable to a much larger class of problems than those considered here.Comment: 41 pages, 4 figures, submitte

    The Kundu--Eckhaus equation and its discretizations

    Full text link
    In this article we show that the complex Burgers and the Kundu--Eckhaus equations are related by a Miura transformation. We use this relation to discretize the Kundu--Eckhaus equation.Comment: 10 page

    Parametric Forcing of Waves with Non-Monotonic Dispersion Relation: Domain Structures in Ferrofluids?

    Full text link
    Surface waves on ferrofluids exposed to a dc-magnetic field exhibit a non-monotonic dispersion relation. The effect of a parametric driving on such waves is studied within suitable coupled Ginzburg-Landau equations. Due to the non-monotonicity the neutral curve for the excitation of standing waves can have up to three minima. The stability of the waves with respect to long-wave perturbations is determined viavia a phase-diffusion equation. It shows that the band of stable wave numbers can split up into two or three sub-bands. The resulting competition between the wave numbers corresponding to the respective sub-bands leads quite naturally to patterns consisting of multiple domains of standing waves which differ in their wave number. The coarsening dynamics of such domain structures is addressed.Comment: 23 pages, 6 postscript figures, composed using RevTeX. Submitted to PR

    Mixed-Mode Oscillations in a Stochastic, Piecewise-Linear System

    Full text link
    We analyze a piecewise-linear FitzHugh-Nagumo model. The system exhibits a canard near which both small amplitude and large amplitude periodic orbits exist. The addition of small noise induces mixed-mode oscillations (MMOs) in the vicinity of the canard point. We determine the effect of each model parameter on the stochastically driven MMOs. In particular we show that any parameter variation (such as a modification of the piecewise-linear function in the model) that leaves the ratio of noise amplitude to time-scale separation unchanged typically has little effect on the width of the interval of the primary bifurcation parameter over which MMOs occur. In that sense, the MMOs are robust. Furthermore we show that the piecewise-linear model exhibits MMOs more readily than the classical FitzHugh-Nagumo model for which a cubic polynomial is the only nonlinearity. By studying a piecewise-linear model we are able to explain results using analytical expressions and compare these with numerical investigations.Comment: 25 pages, 10 figure
    • …
    corecore