1,401 research outputs found

    Documenting and modeling the accretion of surface and subsoil organic carbon in agricultural Inceptisols reclaimed from Mediterranean sea marshes in Sardinia

    Get PDF
    High input agriculture in productive Inceptisols that were reclaimed from sea marshes offers an opportunity to study the increase of soil organic carbon (SOC) in soils with originally low SOC. We documented the current SOC content and its distribution with depth for several soil profiles

    LATTES: A new gamma-ray detector concept for South America

    Get PDF
    Currently the detection of Very High Energy gamma-rays for astrophysics rely on the measurement of the Extensive Air Showers (EAS) either using Cherenkov detectors or EAS arrays with larger field of views but also larger energy thresholds. In this talk we present a novel hybrid detector concept for a EAS array with an improved sensitivity in the lower energies (~ 100 GeV). We discuss its main features, capabilities and present preliminary results on its expected perfomances and sensitivities.This wide field of view experiment is planned to be installed at high altitude in South America making it a complementary project to the planned Cherenkov telescope experiments and a powerful tool to trigger further observations of variable sources and to detect transients phenomena

    Sistem Pendukung Keputusan Penerima Beasiswa Dengan Metode Simple Additive Weighting (Studi Kasus Di Fakultas Teknologi Informasi U.K. Maranatha)

    Get PDF
    Currently, the process of determining a scholarship at the Faculty of Information Technology Maranatha Christian University is still done manually. The existence of several types of scholarships offered, the number of defined criteria for each scholarship and the increasing number of students who enroll in order to receive the scholarship, causing the process of determining admission scholarship lasts longer and not objective. Based on the reasons above, this research is conduct using a decision support system that can provide recommendations to scholarship recipients. The assessment criteria of the applicants that much then used algorithms Fuzzy Multiple attribute Decision Making (Fuzzy MADM) with Simple Additive weighting method (SAW). The methodology used in the study consisted of three phases. The first stage is the preparation which includes the identification and formulation process of determining admission scholarship deploying along with the formulation of a decision support system requirements. At the second stage of implementation includes program development, testing, and implementation. While the last stage is the preparation of reports and research outcome

    A novel background reduction strategy for high level triggers and processing in gamma-ray Cherenkov detectors

    Full text link
    Gamma ray astronomy is now at the leading edge for studies related both to fundamental physics and astrophysics. The sensitivity of gamma detectors is limited by the huge amount of background, constituted by hadronic cosmic rays (typically two to three orders of magnitude more than the signal) and by the accidental background in the detectors. By using the information on the temporal evolution of the Cherenkov light, the background can be reduced. We will present here the results obtained within the MAGIC experiment using a new technique for the reduction of the background. Particle showers produced by gamma rays show a different temporal distribution with respect to showers produced by hadrons; the background due to accidental counts shows no dependence on time. Such novel strategy can increase the sensitivity of present instruments.Comment: 4 pages, 3 figures, Proc. of the 9th Int. Syposium "Frontiers of Fundamental and Computational Physics" (FFP9), (AIP, Melville, New York, 2008, in press

    INFN Camera demonstrator for the Cherenkov Telescope Array

    Get PDF
    The Cherenkov Telescope Array is a world-wide project for a new generation of ground-based Cherenkov telescopes of the Imaging class with the aim of exploring the highest energy region of the electromagnetic spectrum. With two planned arrays, one for each hemisphere, it will guarantee a good sky coverage in the energy range from a few tens of GeV to hundreds of TeV, with improved angular resolution and a sensitivity in the TeV energy region better by one order of magnitude than the currently operating arrays. In order to cover this wide energy range, three different telescope types are envisaged, with different mirror sizes and focal plane features. In particular, for the highest energies a possible design is a dual-mirror Schwarzschild-Couder optical scheme, with a compact focal plane. A silicon photomultiplier (SiPM) based camera is being proposed as a solution to match the dimensions of the pixel (angular size of ~ 0.17 degrees). INFN is developing a camera demonstrator made by 9 Photo Sensor Modules (PSMs, 64 pixels each, with total coverage 1/4 of the focal plane) equipped with FBK (Fondazione Bruno Kessler, Italy) Near UltraViolet High Fill factor SiPMs and Front-End Electronics (FEE) based on a Target 7 ASIC, a 16 channels fast sampler (up to 2GS/s) with deep buffer, self-trigger and on-demand digitization capabilities specifically developed for this purpose. The pixel dimensions of 6×66\times6 mm2^2 lead to a very compact design with challenging problems of thermal dissipation. A modular structure, made by copper frames hosting one PSM and the corresponding FEE, has been conceived, with a water cooling system to keep the required working temperature. The actual design, the adopted technical solutions and the achieved results for this demonstrator are presented and discussed.Comment: In Proceedings of the 34th International Cosmic Ray Conference (ICRC2015), The Hague, The Netherlands. All CTA contributions at arXiv:1508.0589

    MAGIC upper limits on the very high energy emission from GRBs

    Get PDF
    The fast repositioning system of the MAGIC Telescope has allowed during its first data cycle, between 2005 and the beginning of year 2006, observing nine different GRBs as possible sources of very high energy gammas. These observations were triggered by alerts from Swift, HETE-II, and Integral; they started as fast as possible after the alerts and lasted for several minutes, with an energy threshold varying between 80 and 200 GeV, depending upon the zenith angle of the burst. No evidence for gamma signals was found, and upper limits for the flux were derived for all events, using the standard analysis chain of MAGIC. For the bursts with measured redshift, the upper limits are compatible with a power law extrapolation, when the intrinsic fluxes are evaluated taking into account the attenuation due to the scattering in the Metagalactic Radiation Field (MRF).Comment: 25 pages, 9 figures, final version accepted by ApJ. Changet title to "MAGIC upped limits on the VERY high energy emission from GRBs", re-organized chapter with description of observation, removed non necessaries figures, added plot of effective area depending on zenith angle, added an appendix explaining the upper limit calculation, added some reference

    Constraints on the steady and pulsed very high energy gamma-ray emission from observations of PSR B1951+32/CTB 80 with the MAGIC Telescope

    Get PDF
    We report on very high energy gamma-observations with the MAGIC Telescope of the pulsar PSR B1951+32 and its associated nebula, CTB 80. Our data constrain the cutoff energy of the pulsar to be less than 32 GeV, assuming the pulsed gamma-ray emission to be exponentially cut off. The upper limit on the flux of pulsed gamma-ray emission above 75 GeV is 4.3*10^-11 photons cm^-2 sec^-1, and the upper limit on the flux of steady emission above 140 GeV is 1.5*10^-11 photons cm^-2 sec^-1. We discuss our results in the framework of recent model predictions and other studies.Comment: 7 pages, 7 figures, replaced with published versio

    Discovery of VHE Gamma Radiation from IC443 with the MAGIC Telescope

    Get PDF
    We report the detection of a new source of very high energy (VHE, E_gamma >= 100GeV) gamma-ray emission located close to the Galactic Plane, MAGIC J0616+225, which is spatially coincident with SNR IC443. The observations were carried out with the MAGIC telescope in the periods December 2005 - January 2006 and December 2006 - January 2007. Here we present results from this source, leading to a VHE gamma-ray signal with a statistical significance of 5.7 sigma in the 2006/7 data and a measured differential gamma-ray flux consistent with a power law, described as dN_gamma/(dA dt dE) = (1.0 +/- 0.2)*10^(-11)(E/0.4 TeV)^(-3.1 +/- 0.3) cm^(-2)s^(-1)TeV^(-1). We briefly discuss the observational technique used and the procedure implemented for the data analysis. The results are put in the perspective of the multiwavelength emission and the molecular environment found in the region of IC443.Comment: Accepted by ApJ Letter

    MAGIC observations of very high energy gamma-rays from HESS J1813-178

    Get PDF
    Recently, the HESS collaboration has reported the detection of gamma-ray emission above a few hundred GeV from eight new sources located close to the Galactic Plane. The source HESS J1813-178 has sparked particular interest, as subsequent radio observations imply an association with SNR G12.82-0.02. Triggered by the detection in VHE gamma-rays, a positionally coincident source has also been found in INTEGRAL and ASCA data. In this Letter we present MAGIC observations of HESS J1813-178, resulting in the detection of a differential gamma-ray flux consistent with a hard-slope power law, described as dN/(dA dt dE) = (3.3+/-0.5)*10^{-12} (E/TeV)^{-2.1+/-0.2} cm^(-2)s^(-1)TeV^(-1). We briefly discuss the observational technique used, the procedure implemented for the data analysis, and put this detection in the perspective of multifrequency observations.Comment: Accepted by ApJ Letter

    Discovery of Very High Energy gamma-rays from 1ES 1011+496 at z=0.212

    Get PDF
    We report on the discovery of Very High Energy (VHE) gamma-ray emission from the BL Lacertae object 1ES1011+496. The observation was triggered by an optical outburst in March 2007 and the source was observed with the MAGIC telescope from March to May 2007. Observing for 18.7 hr we find an excess of 6.2 sigma with an integrated flux above 200 GeV of (1.58±0.32)1011\pm0.32) 10^{-11} photons cm2^{-2} s1^{-1}. The VHE gamma-ray flux is >40% higher than in March-April 2006 (reported elsewhere), indicating that the VHE emission state may be related to the optical emission state. We have also determined the redshift of 1ES1011+496 based on an optical spectrum that reveals the absorption lines of the host galaxy. The redshift of z=0.212 makes 1ES1011+496 the most distant source observed to emit VHE gamma-rays up to date.Comment: 4 pages, 6 figures, minor changes to fit the ApJ versio
    corecore