4,633 research outputs found
Bimetal sensor averages temperature of nonuniform profile
Instrument that measures an average temperature across a nonuniform temperature profile under steady-state conditions has been developed. The principle of operation is an application of the expansion of a solid material caused by a change in temperature
Vacuum Polarization in QED with World-Line Methods
Motivated by several recent papers on string-inspired calculations in QED, we
here present our own use of world-line techniques in order to calculate the
vacuum polarization and effective action in scalar and spinor QED with external
arbitrary constant electromagnetic field configuration.Comment: 9 page
Experimental study of flow distribution with circumferential manifolds
Water flow test results on fluid flow distribution and pressure loss in curved manifolds with tangential or radial entry are reported. Manifolds were studied both as inlet and outlet manifolds. Manifolds can be used for boilers and/or heat exchangers for advanced space electric power plants
A perturbative approach to Dirac observables and their space-time algebra
We introduce a general approximation scheme in order to calculate gauge
invariant observables in the canonical formulation of general relativity. Using
this scheme we will show how the observables and the dynamics of field theories
on a fixed background or equivalently the observables of the linearized theory
can be understood as an approximation to the observables in full general
relativity. Gauge invariant corrections can be calculated up to an arbitrary
high order and we will explicitly calculate the first non--trivial correction.
Furthermore we will make a first investigation into the Poisson algebra between
observables corresponding to fields at different space--time points and
consider the locality properties of the observables.Comment: 23 page
(Broken) Gauge Symmetries and Constraints in Regge Calculus
We will examine the issue of diffeomorphism symmetry in simplicial models of
(quantum) gravity, in particular for Regge calculus. We find that for a
solution with curvature there do not exist exact gauge symmetries on the
discrete level. Furthermore we derive a canonical formulation that exactly
matches the dynamics and hence symmetries of the covariant picture. In this
canonical formulation broken symmetries lead to the replacements of constraints
by so--called pseudo constraints. These considerations should be taken into
account in attempts to connect spin foam models, based on the Regge action,
with canonical loop quantum gravity, which aims at implementing proper
constraints. We will argue that the long standing problem of finding a
consistent constraint algebra for discretized gravity theories is equivalent to
the problem of finding an action with exact diffeomorphism symmetries. Finally
we will analyze different limits in which the pseudo constraints might turn
into proper constraints. This could be helpful to infer alternative
discretization schemes in which the symmetries are not broken.Comment: 32 pages, 15 figure
From covariant to canonical formulations of discrete gravity
Starting from an action for discretized gravity we derive a canonical
formalism that exactly reproduces the dynamics and (broken) symmetries of the
covariant formalism. For linearized Regge calculus on a flat background --
which exhibits exact gauge symmetries -- we derive local and first class
constraints for arbitrary triangulated Cauchy surfaces. These constraints have
a clear geometric interpretation and are a first step towards obtaining
anomaly--free constraint algebras for canonical lattice gravity. Taking higher
order dynamics into account the symmetries of the action are broken. This
results in consistency conditions on the background gauge parameters arising
from the lowest non--linear equations of motion. In the canonical framework the
constraints to quadratic order turn out to depend on the background gauge
parameters and are therefore pseudo constraints. These considerations are
important for connecting path integral and canonical quantizations of gravity,
in particular if one attempts a perturbative expansion.Comment: 37 pages, 5 figures (minor modifications, matches published version +
updated references
Lamm, Valluri, Jentschura and Weniger comment on "A Convergent Series for the QED Effective Action" by Cho and Pak [Phys. Rev. Lett. vol. 86, pp. 1947-1950 (2001)]
Complete results were obtained by us in [Can. J. Phys. 71, 389 (1993)] for
convergent series representations of both the real and the imaginary part of
the QED effective action; these derivations were based on correct intermediate
steps. In this comment, we argue that the physical significance of the
"logarithmic correction term" found by Cho and Pak in [Phys. Rev. Lett. 86,
1947 (2001)] in comparison to the usual expression for the QED effective action
remains to be demonstrated. Further information on related subjects can be
found in Appendix A of hep-ph/0308223 and in hep-th/0210240.Comment: 1 page, RevTeX; only "meta-data" update
Photon propagation in a cold axion background with and without magnetic field
A cold relic axion condensate resulting from vacuum misalignment in the early
universe oscillates with a frequency m, where m is the axion mass. We determine
the properties of photons propagating in a simplified version of such a
background where the sinusoidal variation is replaced by a square wave profile.
We prove that previous results that indicated that charged particles moving
fast in such a background radiate, originally derived assuming that all momenta
involved were much larger than m, hold for long wavelengths too. We also
analyze in detail how the introduction of a magnetic field changes the
properties of photon propagation in such a medium. We briefly comment on
possible astrophysical implications of these results.Comment: 17 pages, 4 figures, revised version includes an extended discussion
on physical implication
Breaking and restoring of diffeomorphism symmetry in discrete gravity
We discuss the fate of diffeomorphism symmetry in discrete gravity.
Diffeomorphism symmetry is typically broken by the discretization. This has
repercussions for the observable content and the canonical formulation of the
theory. It might however be possible to construct discrete actions, so--called
perfect actions, with exact symmetries and we will review first steps towards
this end.Comment: to appear in the Proceedings of the XXV Max Born Symposium "The
Planck Scale", Wroclaw, 29 June - 3 July, 200
- …
