1,023 research outputs found
Global Stability ofxn+1=A/xpn+1/x1/pn−1
AbstractWe obtain a general global attractivity result for a difference equation of the formxn+1=f(xn,xn−1),n=0,1,…, wheref(x,y) is strictly decreasing in both arguments. The result applies to the difference equationxn+1=A/xpn+1/x1/pn−1,n=0,1,…, wherex−1,x0,A∈(0,∞) andp>1
Theory of sound attenuation in glasses: The role of thermal vibrations
Sound attenuation and internal friction coefficients are calculated for a
realistic model of amorphous silicon. It is found that, contrary to previous
views, thermal vibrations can induce sound attenuation at ultrasonic and
hypersonic frequencies that is of the same order or even larger than in
crystals. The reason is the internal-strain induced anomalously large
Gr\"uneisen parameters of the low-frequency resonant modes.Comment: 8 pages, 3 figures; to appear in PR
A Virtual Conversational Agent for Teens with Autism: Experimental Results and Design Lessons
We present the design of an online social skills development interface for
teenagers with autism spectrum disorder (ASD). The interface is intended to
enable private conversation practice anywhere, anytime using a web-browser.
Users converse informally with a virtual agent, receiving feedback on nonverbal
cues in real-time, and summary feedback. The prototype was developed in
consultation with an expert UX designer, two psychologists, and a pediatrician.
Using the data from 47 individuals, feedback and dialogue generation were
automated using a hidden Markov model and a schema-driven dialogue manager
capable of handling multi-topic conversations. We conducted a study with nine
high-functioning ASD teenagers. Through a thematic analysis of post-experiment
interviews, identified several key design considerations, notably: 1) Users
should be fully briefed at the outset about the purpose and limitations of the
system, to avoid unrealistic expectations. 2) An interface should incorporate
positive acknowledgment of behavior change. 3) Realistic appearance of a
virtual agent and responsiveness are important in engaging users. 4)
Conversation personalization, for instance in prompting laconic users for more
input and reciprocal questions, would help the teenagers engage for longer
terms and increase the system's utility
Multiple-charge transfer and trapping in DNA dimers
We investigate the charge transfer characteristics of one and two excess
charges in a DNA base-pair dimer using a model Hamiltonian approach. The
electron part comprises diagonal and off-diagonal Coulomb matrix elements such
a correlated hopping and the bond-bond interaction, which were recently
calculated by Starikov [E. B. Starikov, Phil. Mag. Lett. {\bf 83}, 699 (2003)]
for different DNA dimers. The electronic degrees of freedom are coupled to an
ohmic or a super-ohmic bath serving as dissipative environment. We employ the
numerical renormalization group method in the nuclear tunneling regime and
compare the results to Marcus theory for the thermal activation regime. For
realistic parameters, the rate that at least one charge is transferred from the
donor to the acceptor in the subspace of two excess electrons significantly
exceeds the rate in the single charge sector. Moreover, the dynamics is
strongly influenced by the Coulomb matrix elements. We find sequential and pair
transfer as well as a regime where both charges remain self-trapped. The
transfer rate reaches its maximum when the difference of the on-site and
inter-site Coulomb matrix element is equal to the reorganization energy which
is the case in a GC-GC dimer. Charge transfer is completely suppressed for two
excess electrons in AT-AT in an ohmic bath and replaced by damped coherent
electron-pair oscillations in a super-ohmic bath. A finite bond-bond
interaction alters the transfer rate: it increases as function of when
the effective Coulomb repulsion exceeds the reorganization energy (inverted
regime) and decreases for smaller Coulomb repulsion
Two state scattering problem to Multi-channel scattering problem: Analytically solvable model
Starting from few simple examples we have proposed a general method for
finding an exact analytical solution for the two state scattering problem in
presence of a delta function coupling. We have also extended our model to deal
with general one dimensional multi-channel scattering problems
Impacts of biomass production at civil airports on grassland bird conservation and aviation strike risk
Growing concerns about climate change, foreign oil dependency, and environmental quality have fostered interest in perennial native grasses (e.g., switchgrass [Panicum virgatum]) for bioenergy production while also maintaining biodiversity and ecosystem function. However, biomass cultivation in marginal landscapes such as airport grasslands may have detrimental effects on aviation safety as well as conservation efforts for grassland birds. In 2011–2013, we investigated effects of vegetation composition and harvest frequency on seasonal species richness and habitat use of grassland birds and modeled relative abundance, aviation risk, and conservation value of birds associated with biomass crops. Avian relative abundance was greater in switchgrass monoculture plots during the winter months, whereas Native Warm-Season Grass (NWSG) mixed species plantings were favored by species during the breeding season. Conversely, treatment differences in aviation risk and conservation value were not biologically significant. Only 2.6% of observations included avian species of high hazard to aircraft, providing support for semi-natural grasslands as a feasible landcover option at civil airports. Additionally, varied harvest frequencies across a mosaic of switchgrass monocultures and NWSG plots allows for biomass production with multiple vegetation structure options for grassland birds to increase seasonal avian biodiversity and habitat use
Quantum Origins of Molecular Recognition and Olfaction in Drosophila
The standard model for molecular recognition of an odorant is that receptor
sites discriminate by molecular geometry as evidenced that two chiral molecules
may smell very differently. However, recent studies of isotopically labeled
olfactants indicate that there may be a molecular vibration-sensing component
to olfactory reception, specifically in the spectral region around 2300
cm. Here we present a donor-bridge-acceptor model for olfaction which
attempts to explain this effect. Our model, based upon accurate quantum
chemical calculations of the olfactant (bridge) in its neutral and ionized
states, posits that internal modes of the olfactant are excited impulsively
during hole transfer from a donor to acceptor site on the receptor,
specifically those modes that are resonant with the tunneling gap. By
projecting the impulsive force onto the internal modes, we can determine which
modes are excited at a given value of the donor-acceptor tunneling gap. Only
those modes resonant with the tunneling gap and are impulsively excited will
give a significant contribution to the inelastic transfer rate. Using
acetophenone as a test case, our model and experiments on D. melanogaster
suggest that isotopomers of a given olfactant give rise to different odorant
qualities. These results support the notion that inelastic scattering effects
play a role in discriminating between isotopomers, but that this is not a
general spectroscopic effectComment: 7 pages, 3 figure
Recommended from our members
Simulation and performance analysis of an ammonia-water absorption heat pump based on the generator-absorber heat exchange (GAX) cycle
A computer simulation has been conducted to investigate the performance of an absorption heat pump, based on the Generator-Absorber Heat Exchange (GAX) cycle employing ammonia-water as the working fluid pair. The particular feature of this cycle is the ability to recover heat from the absorber and employ it to partially heat the generator, thus improving the COP. In the present study, a detailed simulation has been conducted of one of the preferred configurations for the cycle. A modular computer code for flexible simulation of absorption systems (ABSIM) was employed. Performance parameters, including COP and capacity, were investigated as functions of different operating parameters over a wide range of conditions in both the cooling and heating mode. The effect of the ambient temperature, the rectifier performance, the flowrate in the GAX heat transfer loop and the refrigerant flow control were investigated. COP`s on the order of 1.0 for cooling and 2.0 for heating have been calculated
Estimating Interspecific Economic Risk of Bird Strikes With Aircraft
The International Civil Aviation Organization promotes prioritization of wildlife management on airports, among other safety issues, by emphasizing the risk of wildlife–aircraft collisions (strikes). In its basic form, strike risk comprises a frequency component (i.e., how often strikes occur) and a severity component reflecting the cost of the incident. However, there is no widely accepted formula for estimating strike risk. Our goal was to develop a probabilistic risk metric that is adaptable for airports to use. Our specific objectives were to 1) update species-specific, relative hazard scores (i.e., the likelihood of aircraft damage or effect on flight when strikes occur) using recent U.S. Federal Aviation Administration (FAA) wildlife strike data (2010–2015); 2) develop 4 a priori risk models, reflecting species-specific strike data and updated relative hazard scores; 3) test these models against independent data (monetary costs associated with strikes); and 4) apply our best model to strike data from 4 large, FAA-certificated airports to illustrate its application at the local level. Our best-fitting risk model included an independent variable that was an interaction of quadratic transformed relative hazard score and number of wildlife strikes (r2=0.74). Top species in terms of estimated risk nationally were red-tailed hawk (Buteo jamaicensis), Canada goose (Branta canadensis), turkey vulture (Cathartes aura), rock pigeon (Columba livia), and mourning dove (Zenaida macroura). We found substantial overlap among the top 5 riskiest species locally across 3 of 4 airports considered, illustrating the degree of site specific differences that affect risk. Strike risk is dynamic; therefore, future work on risk estimation should allow for model adjustment to reflect ongoing wildlife management actions at airports that could influence future strike risk. Published 2018. This article is a U.S. Government work and is in the public domain in the USA
Nonlinearities and Carrier Dynamics in Refractory Plasmonic TiN Thin Films
Titanium nitride is widely used in plasmonic applications, due to its robustness and optical properties which resemble those of gold. Despite this interest, the nonlinear properties have only recently begun to be investigated. In this work, beam deflection and non-degenerate femtosecond pump-probe spectroscopy (800 nm pump and 650 nm probe) were used to measure the real and imaginary transient nonlinear response of 30-nm-thick TiN films on sapphire and fused silica in the metallic region governed by Fermi-smearing nonlinearities. In contrast to other metals, it is found that TiN exhibits non-instantaneous positive refraction and reverse saturable absorption whose relaxation is dominated by slow thermal diffusion into the substrate lasting several hundred picoseconds. Ultrafast contributions arising from hot-electron excitations are found to be a small part of the overall response, only appearing significant in the TiN on fused silica at irradiance levels above 100 GW-cm-2. The modeling and origin of this response is discussed, and TiN is found to be adept at achieving ultrafast (below 1 ps) lattice heating which, combined with the robustness and low-cost of the material may prove useful in various thermo-optical applications such as local heating, heat-assisted processes, and nanoscale heat transfer
- …