1,562 research outputs found

    Humide areas in Paraguay: description of vegetation

    No full text
    The humid areas in Paraguay have been poorly studied, and in some of them only sporadic collections have been performed in order to explore both their fauna and flora. The best studied zones in this regard have been the surroundings of the Ypacaraí lake as well as the swamps of the humid Chaco, which are the main subjects in this work

    Sub-optical resolution of single spins using magnetic resonance imaging at room temperature in diamond

    Full text link
    There has been much recent interest in extending the technique of magnetic resonance imaging (MRI) down to the level of single spins with sub-optical wavelength resolution. However, the signal to noise ratio for images of individual spins is usually low and this necessitates long acquisition times and low temperatures to achieve high resolution. An exception to this is the nitrogen-vacancy (NV) color center in diamond whose spin state can be detected optically at room temperature. Here we apply MRI to magnetically equivalent NV spins in order to resolve them with resolution well below the optical wavelength of the readout light. In addition, using a microwave version of MRI we achieved a resolution that is 1/270 size of the coplanar striplines, which define the effective wavelength of the microwaves that were used to excite the transition. This technique can eventually be extended to imaging of large numbers of NVs in a confocal spot and possibly to image nearby dark spins via their mutual magnetic interaction with the NV spin.Comment: 10 pages, 8 figures, Journal of Luminescence (Article in Press

    Rapid flipping of parametric phase states

    Full text link
    Since the invention of the solid-state transistor, the overwhelming majority of computers followed the von Neumann architecture that strictly separates logic operations and memory. Today, there is a revived interest in alternative computation models accompanied by the necessity to develop corresponding hardware architectures. The Ising machine, for example, is a variant of the celebrated Hopfield network based on the Ising model. It can be realized with artifcial spins such as the `parametron' that arises in driven nonlinear resonators. The parametron encodes binary information in the phase state of its oscillation. It enables, in principle, logic operations without energy transfer and the corresponding speed limitations. In this work, we experimentally demonstrate flipping of parametron phase states on a timescale of an oscillation period, much faster than the ringdown time \tau that is often (erroneously) deemed a fundamental limit for resonator operations. Our work establishes a new paradigm for resonator-based logic architectures.Comment: 6 pages, 3 figure

    Serum protein electrophoresis : an underused but very useful test

    Get PDF
    Serum protein electrophoresis is used in clinical practice to identify patients with multiple myeloma and other serum protein disorders. It is an inexpensive and easy-to-perform screening procedure. Electrophoresis separates serum proteins based on their physical properties and identifies morphologic patterns in response to acute and chronic inflammation, various malignancies, liver or renal failure, and hereditary protein disorders. For gastroenterologists, the use of serum protein electrophoresis may be helpful in the diagnosis of both common diseases with unusual presentations and rare disorders with typical presentations. Therefore, it represents an ideal screening tool

    Harnessing nuclear spin polarization fluctuations in a semiconductor nanowire

    Full text link
    Soon after the first measurements of nuclear magnetic resonance (NMR) in a condensed matter system, Bloch predicted the presence of statistical fluctuations proportional to 1/N1/\sqrt{N} in the polarization of an ensemble of NN spins. First observed by Sleator et al., so-called "spin noise" has recently emerged as a critical ingredient in nanometer-scale magnetic resonance imaging (nanoMRI). This prominence is a direct result of MRI resolution improving to better than 100 nm^3, a size-scale in which statistical spin fluctuations begin to dominate the polarization dynamics. We demonstrate a technique that creates spin order in nanometer-scale ensembles of nuclear spins by harnessing these fluctuations to produce polarizations both larger and narrower than the natural thermal distribution. We focus on ensembles containing ~10^6 phosphorus and hydrogen spins associated with single InP and GaP nanowires (NWs) and their hydrogen-containing adsorbate layers. We monitor, control, and capture fluctuations in the ensemble's spin polarization in real-time and store them for extended periods. This selective capture of large polarization fluctuations may provide a route for enhancing the weak magnetic signals produced by nanometer-scale volumes of nuclear spins. The scheme may also prove useful for initializing the nuclear hyperfine field of electron spin qubits in the solid-state.Comment: 18 pages, 5 figure
    corecore