564 research outputs found

    Correlation functions and emission time sequence of light charged particles from projectile-like fragment source in E/A = 44 and 77 MeV 40Ar + 27Al collisions

    Full text link
    Two-particle correlation functions, involving protons, deuterons, tritons, and alpha-particles, have been measured at very forward angles (0.7 deg < theta_lab < 7 deg), in order to study projectile-like fragment (PLF) emission in E/A = 44 and 77 MeV 40Ar + 27Al collisions. Peaks, originating from resonance decays, are larger at E/A = 44 than at 77 MeV. This reflects the larger relative importance of independently emitted light particles, as compared to two-particle decay from unstable fragments, at the higher beam energy. The time sequence of the light charged particles, emitted from the PLF, has been deduced from particle-velocity-gated correlation functions (discarding the contribution from resonance decays). Alpha-particles are found to have an average emission time shorter than protons but longer than tritons and deuterons.Comment: 18 pages, 5 figures, submitted to Nuclear Physics

    Study of the Fusion-Fission Process in the 35Cl+24Mg^{35}Cl+^{24}Mg Reaction

    Get PDF
    Fusion-fission and fully energy-damped binary processes of the 35^{35}Cl+24^{24}Mg reaction were investigated using particle-particle coincidence techniques at a 35^{35}Cl bombarding energy of Elab_{lab} \approx 8 MeV/nucleon. Inclusive data were also taken in order to determine the partial wave distribution of the fusion process. The fragment-fragment correlation data show that the majority of events arises from a binary-decay process with a relatively large multiplicity of secondary light-charged particles emitted by the two primary excited fragments in the exit channel. No evidence is observed for ternary-breakup processes, as expected from the systematics recently established for incident energies below 15 MeV/nucleon and for a large number of reactions. The binary-process results are compared with predictions of statistical-model calculations. The calculations were performed using the Extended Hauser-Feshbach method, based on the available phase space at the scission point of the compound nucleus. This new method uses temperature-dependent level densities and its predictions are in good agreement with the presented experimental data, thus consistent with the fusion-fission origin of the binary fully-damped yields.Comment: 30 pages standard REVTeX file, 10 eps Figures; to be published at the European Physical Journal A - Hadrons and Nucle

    Isospin diffusion in semi-peripheral 58Ni^{58}Ni + 197Au^{197}Au collisions at intermediate energies (I): Experimental results

    Get PDF
    Isospin diffusion in semi-peripheral collisions is probed as a function of the dissipated energy by studying two systems 58Ni^{58}Ni + 58Ni^{58}Ni and 58Ni^{58}Ni + 197Au^{197}Au, over the incident energy range 52-74\AM. A close examination of the multiplicities of light products in the forward part of phase space clearly shows an influence of the isospin of the target on the neutron richness of these products. A progressive isospin diffusion is observed when collisions become more central, in connection with the interaction time

    Properties of projectile-fragments in the 40^{40}Ar + 27^{27}Al reaction at 44 A MeV. Comparison with a multisequential decay model

    Get PDF
    GANIL-EXPResults on projectile fragment–fragment coincidences in the forward direction and for the reaction 40Ar + 27Al at 44 A MeV are presented and compared with the predictions of two different entrance channel models, a two-body and a three-body mechanism both followed by a binary multisequential decay including fission. This analysis shows that many features of the projectile decay products are well accounted for by the binary multisequential decay model. However the results depend critically upon the initial masses and excitation energies of the primary projectile fragments. In this respect, the three-body approach underestimates the excitation energy imparted to the primary fragments whereas the two-body scenario overestimates it. The present data put strong constraints on the initial excitation energy imparted to the primary fragments which appears to be intermediate between the predictions of the two models

    Isospin Diffusion in 58^{58}Ni-Induced Reactions at Intermediate Energies

    Get PDF
    Isospin diffusion is probed as a function of the dissipated energy by studying two systems 58^{58}Ni+58^{58}Ni and 58^{58}Ni+197^{197}Au, over the incident energy range 52-74\AM. Experimental data are compared with the results of a microscopic transport model with two different parameterizations of the symmetry energy term. A better overall agreement between data and simulations is obtained when using a symmetry term with a potential part linearly increasing with nuclear density. The isospin equilibration time at 52 \AM{} is estimated to 130±\pm10 fm/cc

    The prominent role of the heaviest fragment in multifragmentation and phase transition for hot nuclei

    Get PDF
    The role played by the heaviest fragment in partitions of multifragmenting hot nuclei is emphasized. Its size/charge distribution (mean value, fluctuations and shape) gives information on properties of fragmenting nuclei and on the associated phase transition.Comment: 11 pages, Proceedings of IWND09, August 23-25, Shanghai (China

    New approach of fragment charge correlations in 129Xe+(nat)Sn central collisions

    Full text link
    A previous analysis of the charge (Z) correlations in the ΔZ\Delta Z- plane for Xe+Sn central collisions at 32 MeV/u has shown an enhancement in the production of equally sized fragments (low ΔZ\Delta Z) which was interpreted as an evidence for spinodal decomposition. However the signal is weak and rises the question of the estimation of the uncorrelated yield. After a critical analysis of its robustness, we propose in this paper a new technique to build the uncorrelated yield in the charge correlation function. The application of this method to Xe+Sn central collision data at 32, 39, 45 and 50 MeV/u does not show any particular enhancement of the correlation function in any ΔZ\Delta Z bin.Comment: 23 pages, 9 figures, revised version with an added figure and minor changes. To appear in Nuclear Physics

    Search for Multifragmentation Near Threshold in the 3-He + Ag Reaction

    Get PDF
    This research was sponsored by the National Science Foundation Grant NSF PHY-931478

    Multifragment Emission in the 3-He + nat-Hg Reaction at 0.90 and 3.6 GeV

    Get PDF
    This research was sponsored by the National Science Foundation Grant NSF PHY-931478
    corecore