42 research outputs found

    Sentiment analysis on COVID-19 Twitter data streams using deep belief neural networks

    Get PDF
    Social media is Internet-based by design, allowing people to share content quickly via electronic means. People can openly express their thoughts on social media sites such as Twitter, which can then be shared with other people. During the recent COVID-19 outbreak, public opinion analytics provided useful information for determining the best public health response. At the same time, the dissemination of misinformation, aided by social media and other digital platforms, has proven to be a greater threat to global public health than the virus itself, as the COVID-19 pandemic has shown. The public's feelings on social distancing can be discovered by analysing articulated messages from Twitter. The automated method of recognizing and classifying subjective information in text data is known as sentiment analysis. In this research work, we have proposed to use a combination of preprocessing approaches such as tokenization, filtering, stemming, and building N-gram models. Deep belief neural network (DBN) with pseudo labelling is used to classify the tweets. Top layers of the base classifiers are boosted in the pseudo labelling strategy, whereas lower levels of the base classifiers share weights for feature extraction. By introducing the pseudo boost mechanism, our suggested technique preserves the same time complexity as a DBN while achieving fast convergence to optimality. The pseudo labelling improves the performance of the classification. It extracts the keywords from the tweets with high precision. The results reveal that using the DBN classifier in conjunction with the bigram in the N-gram model outperformed other models by 90.3 percent. The proposed approach can also aid medical professionals and decision-makers in determining the best course of action for each location based on their views regarding the pandemic

    Solid lipid nanoparticles of irbesartan: preparation, characterization, optimization and pharmacokinetic studies

    Get PDF
    ABSTRACT Irbesartan is an antihypertensive with limited bioavailability and solid lipid nanoparticles (SLN) is one of the approaches to improve bioavailability. Solid lipid nanoparticles were prepared using glyceryl monostearate by solvent emulsification method followed by probe sonication. Irbesartan loaded SLNs were characterized and optimized by parameters like particle size, zeta potential, surface morphology entrapment efficiency and in vitro release. The optimized formulation was then further evaluated for the pharmacokinetic studies in Wistar rats. Irbesartan-loaded SLN of particle size 523.7 nm and 73.8% entrapment efficiency showed good bioavailability in Wistar rats and also showed optimum stability in the studies. The SLN prepared using glyceryl monostearate by solvent emulsification method leads to improve bioavailability of the drug

    IL-1β Stimulates COX-2 Dependent PGE2 Synthesis and CGRP Release in Rat Trigeminal Ganglia Cells

    Get PDF
    OBJECTIVE: Pro-inflammatory cytokines like Interleukin-1 beta (IL-1β) have been implicated in the pathophysiology of migraine and inflammatory pain. The trigeminal ganglion and calcitonin gene-related peptide (CGRP) are crucial components in the pathophysiology of primary headaches. 5-HT1B/D receptor agonists, which reduce CGRP release, and cyclooxygenase (COX) inhibitors can abort trigeminally mediated pain. However, the cellular source of COX and the interplay between COX and CGRP within the trigeminal ganglion have not been clearly identified. METHODS AND RESULTS: 1. We used primary cultured rat trigeminal ganglia cells to assess whether IL-1β can induce the expression of COX-2 and which cells express COX-2. Stimulation with IL-1β caused a dose and time dependent induction of COX-2 but not COX-1 mRNA. Immunohistochemistry revealed expression of COX-2 protein in neuronal and glial cells. 2. Functional significance was demonstrated by prostaglandin E2 (PGE(2)) release 4 hours after stimulation with IL-1β, which could be aborted by a selective COX-2 (parecoxib) and a non-selective COX-inhibitor (indomethacin). 3. Induction of CGRP release, indicating functional neuronal activation, was seen 1 hour after PGE(2) and 24 hours after IL-1β stimulation. Immunohistochemistry showed trigeminal neurons as the source of CGRP. IL-1β induced CGRP release was blocked by parecoxib and indomethacin, but the 5-HT1B/D receptor agonist sumatriptan had no effect. CONCLUSION: We identified a COX-2 dependent pathway of cytokine induced CGRP release in trigeminal ganglia neurons that is not affected by 5-HT1B/D receptor activation. Activation of neuronal and glial cells in the trigeminal ganglion by IL-β leads to an elevated expression of COX-2 in these cells. Newly synthesized PGE(2) (by COX-2) in turn activates trigeminal neurons to release CGRP. These findings support a glia-neuron interaction in the trigeminal ganglion and demonstrate a sequential link between COX-2 and CGRP. The results could help to explain the mechanism of action of COX-2 inhibitors in migraine

    Automatic brain localization in fetal MRI using superpixel graphs

    Get PDF
    Fetal MRI is emerging as an effective, non-invasive tool in prenatal diagnosis and pregnancy follow-up. However, there is a significant variability of the position and orientation of the fetus in the MR images. This makes these images more difficult to analyze and interpret compared to standard adult MR imaging, which standardized anatomical imaging aligned planes. We address this issue by automatic localization of the fetal anatomy, in particular, the brain which is a structure of interest for many fetal MRI studies. We first extract superpixels followed by the computation of a histogram of features for each superpixel using bag of words based on dense scale invariant feature transform (DSIFT) descriptors. We construct a graph of superpixels and train a random forest classifier to distinguish between brain and non-brain superpixels. The localization framework has been tested on 55 MR datasets at gestational ages between 20–38 weeks. The proposed method was evaluated using 5-fold cross validation achieving a 94.55% brain detection accuracy rate.</p

    Maternal smoking during pregnancy and fetal organ growth: a magnetic resonance imaging study

    Get PDF
    Objective: To study whether maternal cigarette smoking during pregnancy is associated with alterations in the growth of fetal lungs, kidneys, liver, brain, and placenta. Design: A case-control study, with operators performing the image analysis blinded. Setting: Study performed on a research-dedicated magnetic resonance imaging (MRI) scanner (1.5 T) with participants recruited from a large teaching hospital in the United Kingdom. Participants: A total of 26 pregnant women (13 current smokers, 13 non smokers) were recruited; 18 women (10 current smokers, 8 nonsmokers) returned for the second scan later in their pregnancy. Methods: Each fetus was scanned with MRI at 22–27 weeks and 33–38 weeks gestational age (GA). Main outcome measures: Images obtained with MRI were used to measure volumes of the fetal brain, kidneys, lungs, liver and overall fetal size, as well as placental volumes. Results: Exposed fetuses showed lower brain volumes, kidney volumes, and total fetal volumes, with this effect being greater at visit 2 than at visit 1 for brain and kidney volumes, and greater at visit 1 than at visit 2 for total fetal volume. Exposed fetuses also demonstrated lower lung volume and placental volume, and this effect was similar at both visits. No difference was found between the exposed and nonexposed fetuses with regards to liver volume. Conclusion: Magnetic resonance imaging has been used to show that maternal smoking is associated with reduced growth of fetal brain, lung and kidney; this effect persists even when the volumes are corrected for maternal education, gestational age, and fetal sex. As expected, the fetuses exposed to maternal smoking are smaller in size. Similarly, placental volumes are smaller in smoking versus nonsmoking pregnant women
    corecore