1,006 research outputs found
Further Evidence Suggestive of a Solar Influence on Nuclear Decay Rates
Recent analyses of nuclear decay data show evidence of variations suggestive
of a solar influence. Analyses of datasets acquired at the Brookhaven National
Laboratory (BNL) and at the Physikalisch-Technische Bundesanstalt (PTB) both
show evidence of an annual periodicity and of periodicities with sidereal
frequencies in the neighborhood of 12.25 year^{-1} (at a significance level
that we have estimated to be 10^{-17}). It is notable that this implied
rotation rate is lower than that attributed to the solar radiative zone,
suggestive of a slowly rotating solar core. This leads us to hypothesize that
there may be an "inner tachocline" separating the core from the radiative zone,
analogous to the "outer tachocline" that separates the radiative zone from the
convection zone. The Rieger periodicity (which has a period of about 154 days,
corresponding to a frequency of 2.37 year^{-1}) may be attributed to an r-mode
oscillation with spherical-harmonic indices l=3, m=1, located in the outer
tachocline. This suggests that we may test the hypothesis of a solar influence
on nuclear decay rates by searching BNL and PTB data for evidence of a
"Rieger-like" r-mode oscillation, with l=3, m=1, in the inner tachocline. The
appropriate search band for such an oscillation is estimated to be 2.00-2.28
year^{-1}. We find, in both datasets, strong evidence of a periodicity at 2.11
year^{-1}. We estimate that the probability of obtaining these results by
chance is 10^{-12}.Comment: 12 pages, 6 figures, v2 has a color corrected Fig 6, a corrected
reference, and a corrected typ
Kinematic, kinetic and electromyographic response to customized foot orthoses in patients with tibialis posterior tenosynovitis, pes plano valgus and rheumatoid arthritis
Objective. To describe the effect of customized foot orthoses (FOs) on the kinematic, kinetic and EMG features in patients with RA, tibialis posterior (TP) tenosynovitis and associated pes plano valgus.<p></p>
Methods. Patients with RA and US-confirmed tenosynovitis of TP underwent gait analysis, including three-dimensional (3D) kinematics, kinetics, intramuscular EMG of TP and surface EMG of tibialis anterior, peroneus longus, soleus and medial gastrocnemius. Findings were compared between barefoot and shod with customized FO conditions.<p></p>
Results. Ten patients with RA with a median (range) disease duration of 3 (1–18) years were recruited. Moderate levels of foot pain and foot-related impairment and disability were present with moderately active disease states. Altered timing of the soleus (P = 0.05) and medial gastrocnemius (P = 0.02) and increased magnitude of tibialis anterior (P = 0.03) were noted when barefoot was compared with shod with FO. Trends were noted for reduced TP activity in the contact period (P = 0.09), but this did not achieve statistical significance. Differences in foot motion characteristics were recorded for peak rearfoot eversion (P = 0.01), peak rearfoot plantarflexion (P < 0.001) and peak forefoot abduction (P = 0.02) in the shod with FOs compared with barefoot conditions. No differences in kinetic variables were recorded.<p></p>
Conclusion. This study has demonstrated, for the first time, alterations in muscle activation profiles and foot motion characteristics in patients with RA, pes plano valgus and US-confirmed TP tenosynovitis in response to customized FOs. Complex adaptations were evident in this cohort and further work is required to determine whether these functional alterations lead to improvements in patient symptoms.<p></p>
Power Spectrum Analysis of Physikalisch-Technische Bundesanstalt Decay-Rate Data: Evidence for Solar Rotational Modulation
Evidence for an anomalous annual periodicity in certain nuclear decay data
has led to speculation concerning a possible solar influence on nuclear
processes. We have recently analyzed data concerning the decay rates of Cl-36
and Si-32, acquired at the Brookhaven National Laboratory (BNL), to search for
evidence that might be indicative of a process involving solar rotation.
Smoothing of the power spectrum by weighted-running-mean analysis leads to a
significant peak at frequency 11.18/yr, which is lower than the equatorial
synodic rotation rates of the convection and radiative zones. This article
concerns measurements of the decay rates of Ra-226 acquired at the
Physikalisch-Technische Bundesanstalt (PTB) in Germany. We find that a similar
(but not identical) analysis yields a significant peak in the PTB dataset at
frequency 11.21/yr, and a peak in the BNL dataset at 11.25/yr. The change in
the BNL result is not significant since the uncertainties in the BNL and PTB
analyses are estimated to be 0.13/yr and 0.07/yr, respectively. Combining the
two running means by forming the joint power statistic leads to a highly
significant peak at frequency 11.23/yr. We comment briefly on the possible
implications of these results for solar physics and for particle physics.Comment: 15 pages, 13 figure
Solar Physics - Plasma Physics Workshop
A summary of the proceedings of a conference whose purpose was to explore plasma physics problems which arise in the study of solar physics is provided. Sessions were concerned with specific questions including the following: (1) whether the solar plasma is thermal or non-themal; (2) what spectroscopic data is required; (3) what types of magnetic field structures exist; (4) whether magnetohydrodynamic instabilities occur; (5) whether resistive or non-magnetohydrodynamic instabilities occur; (6) what mechanisms of particle acceleration have been proposed; and (7) what information is available concerning shock waves. Very few questions were answered categorically but, for each question, there was discussion concerning the observational evidence, theoretical analyses, and existing or potential laboratory and numerical experiments
Fast Calculation of the Lomb-Scargle Periodogram Using Graphics Processing Units
I introduce a new code for fast calculation of the Lomb-Scargle periodogram,
that leverages the computing power of graphics processing units (GPUs). After
establishing a background to the newly emergent field of GPU computing, I
discuss the code design and narrate key parts of its source. Benchmarking
calculations indicate no significant differences in accuracy compared to an
equivalent CPU-based code. However, the differences in performance are
pronounced; running on a low-end GPU, the code can match 8 CPU cores, and on a
high-end GPU it is faster by a factor approaching thirty. Applications of the
code include analysis of long photometric time series obtained by ongoing
satellite missions and upcoming ground-based monitoring facilities; and
Monte-Carlo simulation of periodogram statistical properties.Comment: Accepted by ApJ. Accompanying program source (updated since
acceptance) can be downloaded from
http://www.astro.wisc.edu/~townsend/resource/download/code/culsp.tar.g
The acceleration and propagation of solar flare energetic particles
Observations and theories of particle acceleration in solar flares are reviewed. The most direct signatures of particle acceleration in flares are gamma rays, X-rays and radio emissions produced by the energetic particles in the solar atmosphere and energetic particles detected in interplanetary space and in the Earth's atmosphere. The implication of these observations are discussed. Stochastic and shock acceleration as well as acceleration in direct electric fields are considered. Interplanetary particle propagation is discussed and an overview of the highlights of both current and promising future research is presented
Landau damping of partially incoherent Langmuir waves
It is shown that partial incoherence, in the form of stochastic phase noise,
of a Langmuir wave in an unmagnetized plasma gives rise to a Landau-type
damping. Starting from the Zakharov equations, which describe the nonlinear
interaction between Langmuir and ion-acoustic waves, a kinetic equation is
derived for the plasmons by introducing the Wigner-Moyal transform of the
complex Langmuir wave field. This equation is then used to analyze the
stability properties of small perturbations on a stationary solution consisting
of a constant amplitude wave with stochastic phase noise. The concomitant
dispersion relation exhibits the phenomenon of Landau-like damping. However,
this damping differs from the classical Landau damping in which a Langmuir
wave, interacting with the plasma electrons, loses energy. In the present
process, the damping is non-dissipative and is caused by the resonant
interaction between an instantaneously-produced disturbance, due to the
parametric interactions, and a partially incoherent Langmuir wave, which can be
considered as a quasi-particle composed of an ensemble of partially incoherent
plasmons.Comment: 12 page
Energy Losses (Gains) of Massive Coloured Particles in Stochastic Colour Medium
The propagation of massive coloured particles in stochastic background
chromoelectric field is studied using the semiclassical equations of motion.
Depending on the nature of the stochastic background we obtain the formulae for
the energy losses of heavy coloured projectile in nonperturbative hadronic
medium and for the energy gains in the stochastic field present, e.g., in the
turbulent plasma. The result appears to be significantly dependent on the form
of the correlation function of stochastic external fieldComment: 9 pages, BI-TP 94/15, plain LaTe
RHESSI images and spectra of two small flares
We studied the evolution of two small flares (GOES class C2 and C1) that
developed in the same active region with different morphological
characteristics: one is extended and the other is compact. We analyzed the
accuracy and the consistency of different algorithms implemented in RHESSI
software to reconstruct the image of the emitting sources, for energies between
3 and 12 keV. We found that all tested algorithms give consistent results for
the peak position whil the other parameters can differ at most by a factor 2.
Pixon and Forward-fit generally converge to similar results but Pixon is more
reliable for reconstructing a complex source. We investigated the spectral
characteristics of the two flares during their evolution in the 3--25 keV
energy band. We found that a single thermal model of the photon spectrum is
inadequate to fit the observations and we needed to add either a non-thermal
model or a hot thermal one.The non-thermal and the double thermal fits are
comparable. If we assume a non-thermal model, the non-thermal energy is always
higher than the thermal one.Only during the very final decay phase a single
thermal model fits fairly well the observed spectrum.Comment: 26 pages, 11 figures, accepted by Solar Physic
- …
