4,425 research outputs found

    Kaon Photoproduction and the Λ\Lambda Decay Parameter α−\alpha_-

    Get PDF
    The weak decay parameter α−\alpha_- of the Λ\Lambda is an important quantity for the extraction of polarization observables in various experiments. Moreover, in combination with α+\alpha_+ from Λˉ\bar\Lambda decay it provides a measure for matter-antimatter asymmetry. The weak decay parameter also affects the decay parameters of the Ξ\Xi and Ω\Omega baryons and, in general, any quantity in which the polarization of the Λ\Lambda is relevant. The recently reported value by the BESIII collaboration of 0.750(9)(4)0.750(9)(4) is significantly larger than the previous PDG value of 0.642(13)0.642(13) that had been accepted and used for over 40 years. In this work we make an independent estimate of α−\alpha_-, using an extensive set of polarization data measured in kaon photoproduction in the baryon resonance region and constraints set by spin algebra. The obtained value is 0.721(6)(5). The result is corroborated by multiple statistical tests as well as a modern phenomenological model, showing that our new value yields the best description of the data in question. Our analysis supports the new BESIII finding that α−\alpha_- is significantly larger than the previous PDG value. Any experimental quantity relying on the value of α−\alpha_- should therefore be re-considered.Comment: 6 pages, 1 figure

    THE EFFECTS OF OXYGEN, CARBON DIOXIDE, AND PRESSURE ON GROWTH IN CHILOMONAS PARAMECIUM AND TETRAHYMENA GELEII FURGASON

    Get PDF
    1. The effects of O2, CO2, and pressure were studied in two very different species of protozoa, a flagellate, Chilomonas paramecium, grown in acetate-ammonium solution and a ciliate, Tetrahymena geleii, grown in 2 per cent proteose-peptone solution. 2. Chilomonas and Tetrahymena live and reproduce in solutions exposed to a wide range of O2 concentrations, but Chilomonas is killed at high O2 tensions in which Tetrahymena grows best. The optimum O2 concentration for Chilomonas is about 75 mm. pressure but it lives and reproduces in O2 tensions as low as 0.5 mm. while Tetrahymena fails to grow in concentrations below 10 mm. O2 pressure. 3. With a constant O2 tension of 50 mm. pressure, it was found that there is no significant variation in growth in Chilomonas between 50 mm. and 740 mm. total pressure. In Tetrahymena, however, under the same conditions, an optimum total pressure was found at about 500 mm. and growth is comparatively poor at 50 mm. total pressure. 4. Tetrahymena does not live very long in CO2 tensions over 122 mm., although Chilomonas grows as well at 400 mm. CO2 as in air at atmospheric pressure (0.2 mm. CO2). Tetrahymena grows best in an environment minus CO2, but the optimum for Chilomonas is 100 mm. CO2 at which pressure an average of 668,600 ± 30,000 organisms per ml. was produced (temperature, 25 ± 1° C.). 5. Chilomonads grown in high CO2 concentrations (e.g., 122 mm.) produce larger starch granules and more starch than those grown in ordinary air at atmospheric pressure. 6. In solutions exposed to 75 mm. O2 tension (optimum) and 122 mm. CO2 plus 540 mm. N2 pressure, chilomonads contain very little, if any, fat. This phenomenon seems to be due to the action of CO2 on the mechanisms concerned with fat production. 7. In Tetrahymena exposed to pure O2, there is very little fat compared to those grown in atmospheric air. This may be due to the greater oxidation of fat in the higher O2 concentrations. 8. Further evidence is presented in support of the contention that Chilomonas utilizes CO2 in the production of starch

    Tissue Inhibitor of Metalloproteinase–3 (TIMP-3) induces FAS dependent apoptosis in human vascular smooth muscle cells

    Get PDF
    Over expression of Tissue Inhibitor of Metalloproteinases-3 (TIMP-3) in vascular smooth muscle cells (VSMCs) induces apoptosis and reduces neointima formation occurring after saphenous vein interposition grafting or coronary stenting. In studies to address the mechanism of TIMP-3-driven apoptosis in human VSMCs we find that TIMP-3 increased activation of caspase-8 and apoptosis was inhibited by expression of Cytokine response modifier A (CrmA) and dominant negative FAS-Associated protein with Death Domain (FADD). TIMP-3 induced apoptosis did not cause mitochondrial depolarisation, increase activation of caspase-9 and was not inhibited by over-expression of B-cell Lymphoma 2 (Bcl2), indicating a mitochondrial independent/type-I death receptor pathway. TIMP-3 increased levels of the First Apoptosis Signal receptor (FAS) and depletion of FAS with shRNA showed TIMP-3-induced apoptosis was FAS dependent. TIMP-3 induced formation of the Death-Inducing Signalling Complex (DISC), as detected by immunoprecipitation and by immunofluorescence. Cellular-FADD-like IL-1 converting enzyme-Like Inhibitory Protein (c-FLIP) localised with FAS at the cell periphery in the absence of TIMP-3 and this localisation was lost on TIMP-3 expression with c-FLIP adopting a perinuclear localisation. Although TIMP-3 inhibited FAS shedding, this did not increase total surface levels of FAS but instead increased FAS levels within localised regions at the cell surface. A Disintegrin And Metalloproteinase 17 (ADAM17) is inhibited by TIMP-3 and depletion of ADAM17 with shRNA significantly decreased FAS shedding. However ADAM17 depletion did not induce apoptosis or replicate the effects of TIMP-3 by increasing localised clustering of cell surface FAS. ADAM17-depleted cells could activate caspase-3 when expressing levels of TIMP-3 that were otherwise sub-apoptotic, suggesting a partial role for ADAM17 mediated ectodomain shedding in TIMP-3 mediated apoptosis. We conclude that TIMP-3 induced apoptosis in VSMCs is highly dependent on FAS and is associated with changes in FAS and c-FLIP localisation, but is not solely dependent on shedding of the FAS ectodomain

    Differential cross section analysis in kaon photoproduction using associated legendre polynomials

    Full text link
    Angular distributions of differential cross sections from the latest CLAS data sets \cite{bradford}, for the reaction γ+p→K++Λ{\gamma}+p {\to} K^{+} + {\Lambda} have been analyzed using associated Legendre polynomials. This analysis is based upon theoretical calculations in Ref. \cite{fasano} where all sixteen observables in kaon photoproduction can be classified into four Legendre classes. Each observable can be described by an expansion of associated Legendre polynomial functions. One of the questions to be addressed is how many associated Legendre polynomials are required to describe the data. In this preliminary analysis, we used data models with different numbers of associated Legendre polynomials. We then compared these models by calculating posterior probabilities of the models. We found that the CLAS data set needs no more than four associated Legendre polynomials to describe the differential cross section data. In addition, we also show the extracted coefficients of the best model.Comment: Talk given at APFB08, Depok, Indonesia, August, 19-23, 200
    • …
    corecore