4,500 research outputs found

    The Impact of Halo Properties, Energy Feedback and Projection Effects on the Mass-SZ Flux Relation

    Full text link
    We present a detailed analysis of the intrinsic scatter in the integrated SZ effect - cluster mass (Y-M) relation, using semi-analytic and simulated cluster samples. Specifically, we investigate the impact on the Y-M relation of energy feedback, variations in the host halo concentration and substructure populations, and projection effects due to unresolved clusters along the line of sight (the SZ background). Furthermore, we investigate at what radius (or overdensity) one should measure the integrated SZE and define cluster mass so as to achieve the tightest possible scaling. We find that the measure of Y with the least scatter is always obtained within a smaller radius than that at which the mass is defined; e.g. for M_{200} (M_{500}) the scatter is least for Y_{500} (Y_{1100}). The inclusion of energy feedback in the gas model significantly increases the intrinsic scatter in the Y-M relation due to larger variations in the gas mass fraction compared to models without feedback. We also find that variations in halo concentration for clusters of a given mass may partly explain why the integrated SZE provides a better mass proxy than the central decrement. Substructure is found to account for approximately 20% of the observed scatter in the Y-M relation. Above M_{200} = 2x10^{14} h^{-1} msun, the SZ background does not significantly effect cluster mass measurements; below this mass, variations in the background signal reduce the optimal angular radius within which one should measure Y to achieve the tightest scaling with M_{200}.Comment: 12 pages, 6 figures, to be submitted to Ap

    A comparison of techniques to optimize measurement of voltage changes in electrical impedance tomography by minimizing phase shift errors

    Get PDF
    In electrical impedance tomography, errors due to stray capacitance may be reduced by optimization of the reference phase of the demodulator. Two possible methods, maximization of the demodulator output and minimization of reciprocity error have been assessed, applied to each electrode combination individually, or to all combinations as a whole. Using an EIT system with a single impedance measuring circuit and multiplexer to address the 16 electrodes, the methods were tested on resistor-capacitor networks, saline-filled tanks and humans during variation of the saline concentration of a constant fluid volume in the stomach. Optimization of each channel individually gave less error, particularly on humans, and maximization of the output of the demodulator was more robust. This method is, therefore, recommended to optimize systems and reduce systematic errors with similar EIT systems

    Predictions of the causal entropic principle for environmental conditions of the universe

    Full text link
    The causal entropic principle has been proposed as a superior alternative to the anthropic principle for understanding the magnitude of the cosmological constant. In this approach, the probability to create observers is assumed to be proportional to the entropy production \Delta S in a maximal causally connected region -- the causal diamond. We improve on the original treatment by better quantifying the entropy production due to stars, using an analytic model for the star formation history which accurately accounts for changes in cosmological parameters. We calculate the dependence of \Delta S on the density contrast Q=\delta\rho/\rho, and find that our universe is much closer to the most probable value of Q than in the usual anthropic approach and that probabilities are relatively weakly dependent on this amplitude. In addition, we make first estimates of the dependence of \Delta S on the baryon fraction and overall matter abundance. Finally, we also explore the possibility that decays of dark matter, suggested by various observed gamma ray excesses, might produce a comparable amount of entropy to stars.Comment: RevTeX4, 13pp, 10 figures; v2. clarified introduction, added ref

    Theory of Dynamic Stripe Induced Superconductivity

    Full text link
    Since the recently reported giant isotope effect on T* [1] could be consistently explained within an anharmonic spin-charge-phonon interaction model, we consider here the role played by stripe formation on the superconducting properties within the same model. This is a two-component scenario and we recast its basic elements into a BCS effective Hamiltonian. We find that the stripe formation is vital to high-Tc superconductivity since it provides the glue between the two components to enhance Tc to the unexpectedly large values observed experimentally.Comment: 7 pages, 2 figure

    Validation of a finite-element solution for electrical impedance tomography in an anisotropic medium

    Get PDF
    Electrical impedance tomography is an imaging method, with which volumetric images of conductivity are produced by injecting electrical current and measuring boundary voltages. It has the potential to become a portable non-invasive medical imaging technique. Until now, implementations have neglected anisotropy even though human tissues such as bone, muscle and brain white matter are markedly anisotropic. We present a numerical solution using the finite-element method that has been modified for modelling anisotropic conductive media. It was validated in an anisotropic domain against an analytical solution in an isotropic medium after the isotropic domain was diffeomorphically transformed into an anisotropic one. Convergence of the finite element to the analytical solution was verified by showing that the finite-element error norm decreased linearly related to the finite-element size, as the mesh density increased, for the simplified case of Laplace's equation in a cubic domain with a Dirichlet boundary condition

    Searching for "monogenic diabetes" in dogs using a candidate gene approach

    Get PDF
    BACKGROUND: Canine diabetes is a common endocrine disorder with an estimated breed-related prevalence ranging from 0.005% to 1.5% in pet dogs. Increased prevalence in some breeds suggests that diabetes in dogs is influenced by genetic factors and similarities between canine and human diabetes phenotypes suggest that the same genes might be associated with disease susceptibility in both species. Between 1-5% of human diabetes cases result from mutations in a single gene, including maturity onset diabetes of the adult (MODY) and neonatal diabetes mellitus (NDM). It is not clear whether monogenic forms of diabetes exist within some dog breeds. Identification of forms of canine monogenic diabetes could help to resolve the heterogeneity of the condition and lead to development of breed-specific genetic tests for diabetes susceptibility. RESULTS: Seventeen dog breeds were screened for single nucleotide polymorphisms (SNPs) in eighteen genes that have been associated with human MODY/NDM. Six SNP associations were found from five genes, with one gene (ZFP57) being associated in two different breeds. CONCLUSIONS: Some of the genes that have been associated with susceptibility to MODY and NDM in humans appear to also be associated with canine diabetes, although the limited number of associations identified in this study indicates canine diabetes is a heterogeneous condition and is most likely to be a polygenic trait in most dog breeds. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/2052-6687-1-8) contains supplementary material, which is available to authorized users

    Blue cone monochromacy: causative mutations and associated phenotypes.

    Get PDF
    PurposeTo perform a phenotypic assessment of members of three British families with blue cone monochromatism (BCM), and to determine the underlying molecular genetic basis of disease.MethodsAffected members of three British families with BCM were examined clinically and underwent detailed electrophysiological and psychophysical testing. Blood samples were taken for DNA extraction. Molecular analysis involved the amplification of the coding regions of the long (L) and medium (M) wave cone opsin genes and the upstream locus control region (LCR) by polymerase chain reaction (PCR). Gene products were directly sequenced and analyzed.ResultsIn all three families, genetic analysis identified that the underlying cause of BCM involved an unequal crossover within the opsin gene array, with an inactivating mutation. Family 1 had a single 5'-L-M-3' hybrid gene, with an inactivating Cys203Arg (C203R) mutation. Family 3 had an array composed of a C203R inactivated 5'-L-M-3' hybrid gene followed by a second inactive gene. Families 1 and 3 had typical clinical, electrophysiological, and psychophysical findings consistent with stationary BCM. A novel mutation was detected in Family 2 that had a single hybrid gene lacking exon 2. This family presented clinical and psychophysical evidence of a slowly progressive phenotype.ConclusionsTwo of the BCM-causing family genotypes identified in this study comprised different hybrid genes, each of which contained the commonly described C203R inactivating mutation. The genotype in the family with evidence of a slowly progressive phenotype represents a novel BCM mutation. The deleted exon 2 in this family is not predicted to result in a shift in the reading frame, therefore we hypothesize that an abnormal opsin protein product may accumulate and lead to cone cell loss over time. This is the first report of slow progression associated with this class of mutation in the L or M opsin genes in BCM

    Field Dependent Superfluid Density in the Optimally Doped SmFeAsO_(1-x)F_y Superconductor

    Full text link
    The magnetic field dependence of the in-plane magnetic penetration depth for optimally doped SmFeAsO_(1-x)F_y was investigated by combining torque magnetometry, SQUID magnetometry, and muon-spin rotation. The results obtained from these techniques show all a pronounced decrease of the superfluid density as the field is increased up to 1.4 T. This behavior is analysed within a two-band model with self-consistently derived coupled gaps, where the superfluid density related to the larger gap is field independent and the superfluid density related to the smaller gap is strongly suppressed with increasing field.Comment: 7 pages, 5 figure
    • …
    corecore