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Abstract

Background: Canine diabetes is a common endocrine disorder with an estimated breed-related prevalence ranging
from 0.005% to 1.5% in pet dogs. Increased prevalence in some breeds suggests that diabetes in dogs is influenced
by genetic factors and similarities between canine and human diabetes phenotypes suggest that the same genes
might be associated with disease susceptibility in both species. Between 1-5% of human diabetes cases result from
mutations in a single gene, including maturity onset diabetes of the adult (MODY) and neonatal diabetes mellitus
(NDM). It is not clear whether monogenic forms of diabetes exist within some dog breeds. Identification of forms of
canine monogenic diabetes could help to resolve the heterogeneity of the condition and lead to development of
breed-specific genetic tests for diabetes susceptibility.

Results: Seventeen dog breeds were screened for single nucleotide polymorphisms (SNPs) in eighteen genes that
have been associated with human MODY/NDM. Six SNP associations were found from five genes, with one gene
(ZFP57) being associated in two different breeds.

Conclusions: Some of the genes that have been associated with susceptibility to MODY and NDM in humans
appear to also be associated with canine diabetes, although the limited number of associations identified in this
study indicates canine diabetes is a heterogeneous condition and is most likely to be a polygenic trait in most dog
breeds.
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Lay summary
Diabetes is a common condition where sugar (glucose)
levels of the body are poorly regulated, due to either lack
of production of the hormone insulin, made in the pan-
creas, or an increase in resistance of tissues in the body
to the effects of insulin. Canine diabetes is similar to
some forms of human diabetes; it is relatively common
in dogs, and its prevalence (the proportion of dogs af-
fected at a point in time) ranges from 0.005% to 1.5%,
and is dependent on which breed is being considered.
This breed-related variation in the prevalence of diabetes
suggests a genetic basis in dogs.
In humans, some forms of diabetes are due to mutations

in just a single gene (these are called monogenic condi-
tions). This study examined 18 genes that are known to be
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associated with human monogenic diabetes, and tested
whether they are also associated with diabetes in 17 differ-
ent dog breeds.
Six variants from five genes were found to be associ-

ated with diabetes in some breeds. Interestingly, two
different variants in the same gene (called ZFP57 - Zinc
finger protein 57) were associated with diabetes in two
different breeds.

Background
Canine diabetes is a common endocrine disorder with
an estimated prevalence ranging from 0.005% to 1.5% [1].
Almost all diabetic dogs require exogenous insulin therapy
to manage their hyperglycaemia, often resulting from in-
sulin deficiency leading to the inability to control their
blood glucose concentration. Canine diabetes has been
compared with human type 1 diabetes (T1D) [2,3] as
they share many clinical and pathophysiological fea-
tures. However, in contrast with T1D, which is usually
td. This is an Open Access article distributed under the terms of the Creative
ommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and
iginal work is properly credited. The Creative Commons Public Domain
g/publicdomain/zero/1.0/) applies to the data made available in this article,

https://core.ac.uk/display/157854855?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:andrea.short@manchester.ac.uk
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/publicdomain/zero/1.0/


Short et al. Canine Genetics and Epidemiology 2014, 1:8 Page 2 of 10
http://www.cgejournal.org/content/1/1/8
diagnosed in young patients (<30 years of age), canine
insulin-deficiency diabetes (IDD) occurs more commonly
in older dogs, aged 7–12 years [4].
The aetiology and underlying pathogenesis of canine

IDD has not been fully determined, although exocrine
pancreatic disease [5,6] and immune-mediated mecha-
nisms [7] are suspected to be underlying causes of pancre-
atic beta cell destruction. It has been also been suggested
that, in many ways, canine diabetes resembles latent auto-
immune diabetes of the adult (LADA) in man [8], a more
slowly progressive form of autoimmune diabetes.
Pedigree dog breeds, similar to some ethnic groups in

the human population [9], display variability in diabetes
susceptibility, with some breeds (e.g. Samoyed) being
over-represented, whereas others (e.g. Boxer) seem to be
relatively resistant to developing the disease [10]. These
breed-related differences in diabetes susceptibility suggest
that the pathogenesis of diabetes is influenced by genetic
factors and similarities between canine and human dia-
betes phenotypes indicate that the same genes and/or
genetic pathways might be involved in both species. Since
some phenotypes also appear to be somewhat breed-
specific [11], for example NDM, in Keeshond dogs [12]
and dioestrus diabetes in female entire Elkhounds and
Lapphunds [13], there could be differences in the individ-
ual susceptibility genes that contribute to the overall gen-
etic risk for different dog breeds, as is seen with different
ethnic groups and type 2 diabetes in humans [14].
A small proportion of human diabetic patients suffer

from disease resulting from mutation(s) in a single gene.
These monogenic forms of diabetes account for around
1-5% of human diabetes cases and include maturity on-
set diabetes of the young (MODY) and neonatal diabetes
mellitus (NDM) [15]. MODY represents a heterogeneous
group of disorders that are commonly diagnosed before
25 years of age in humans. They result from autosomal
dominant mutations in genes that control the synthesis
or secretion of insulin by the pancreatic beta cells and
include HNF4A (MODY1) [16], GCK (MODY2) [17,18],
HNF1A (MODY3) [19,20], PDX1 (MODY4) [21] and
HNF1B (MODY5) [22]. NDM is commonly diagnosed
around 6 months of age in humans and can be the result
of sporadic or inherited (autosomal dominant) mutations
in certain genes, including KCNJ11, ABCC8 and insulin
(INS) [23,24]. Mutations in the glucokinase (GCK) gene
can also lead to NDM [25].
Although the majority of diabetic dogs (>90%) are diag-

nosed in animals over 6 years of age [26], within the popu-
lation of young diabetic dogs (diagnosed <6 years), there is
a clear breed-related overrepresentation of Golden and
Labrador Retrievers [26]. Screening for mutations in ca-
nine KCNJ11 and INS have not so far identified any gen-
etic anomalies in a cohort of dogs in the United Kingdom
that were affected with NDM (Catchpole unpublished
data). NDM has been reported in a small number of dog
breeds in the USA [27], including an inherited form in
Keeshonds, where the specific genetic defect was not iden-
tified, but which is believed to be inherited in an auto-
somal recessive manner [12].
While the domestication of the dog from the wolf is

believed to have occurred some 15,000-200,000 years ago
[28], most modern pedigree dog breeds have been created
in the last 300 years and represent distinct, genetically
segregated populations with high levels of inbreeding and
reduced heterogeneity. The relatively short time frame
taken to establish modern breeds has been insufficient for
chromosomal restructuring to take place and as a result of
this, they have extended linkage disequilibrium (LD) and
long haplotype blocks within a breed [29]. The selection
bias for ‘desirable’ morphological and behavioural traits
(hunting instinct, head shape etc.) that has been used to
create modern breeds has resulted in a concentration of
the gene(s) associated with the trait within a given breed.
Inadvertently, disease-associated genes have also been
concentrated alongside the morphological and behavioural
traits, resulting in each breed demonstrating highly vari-
able disease incidences for particular conditions [30,31].
Identification of a monogenic type of diabetes in a par-

ticular dog breed could lead to the development of a
breed-specific genetic test for diabetes susceptibility.
To date, the genes that have been identified as causing

monogenic types of diabetes in humans have not been
evaluated in the diabetic dog population, where it is pos-
sible that some breeds may express a monogenic form of
the condition. The aim of the present study was to screen
single nucleotide polymorphisms (SNPs) from eighteen
genes that have been associated with human MODY/
NDM in seventeen dog breeds in order to resolve, at least
in part, canine diabetes breed-related genetic susceptibil-
ities. Although samples sizes were relatively small for some
breeds examined it has been recognised that only 20–50
affected dogs are usually required for identifying conditions
with a monogenic aetiology [32].

Results
Data quality
Twelve of the 65 genotyped SNPs were excluded prior
to analysis because of high failure rates or improper
clustering, leaving 53 SNPs for analysis in each breed.
Excluded assays were: rs24533550 (Cel), rs22588616,
rs9179252 (EIF2AK3), rs22686866 (INS), rs22686870
(INS) rs8516455 (KCNJ11), rs8516454 (KCNJ11), rs897
1148 (PAX4), rs9089163 (PDX1), rs21958943 (RFX6),
rs22261809 (WFS1), rs23916066 (ZFP7). The final num-
ber of SNPs that passed QC for each breed is shown in
Table 1, in addition to the total number of cases and
controls for each breed that were genotyped and that
the number that subsequently passed QC.



Table 1 Breeds used in the study and overview of SNP
analysis

Case (n) Control (n) SNPs (n)

Breed Genotyped After
QC

Genotyped After
QC

After
QC

Bichon Frise 29 28 29 29 47

Border collie 82 76 82 79 49

Border terrier 26 24 28 25 50

Cairn terrier 45 42 45 39 52

Cavalier King
Charles Spaniel

52 50 55 46 51

Cocker Spaniel 63 58 66 66 44

Doberman 18 17 19 18 51

Jack Russell terrier 61 58 60 54 45

Labrador Retriever 153 136 155 155 46

Miniature
Dachshund

39 37 40 39 47

Miniature
Schnauzer

32 29 31 29 49

Samoyed 41 40 84 74 50

Springer Spaniel 22 21 25 25 48

Staffordshire Bull
terrier

15 14 15 15 52

Tibetan terrier 30 30 30 30 51

West Highland
White terrier

135 123 135 129 45

Yorkshire terrier 79 76 80 75 47

Total 922 859 979 927
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Allele association
Allelic analysis identified six SNPs associated with ca-
nine diabetes in this study (Table 2). ZFP57 was asso-
ciated with canine diabetes in two different breeds,
although the associated marker was different: Bichon
Frise (rs23901704) and Samoyed (rs23892119) (Table 2).
Diabetes in Cocker Spaniels showed an association with
three SNPs from three different genes: MTTL1 (rs243
05581), PAX4 (rs22302353) and INS (rs22686871) and
in the miniature Dachshund there was a single associ-
ation with HNF4A (rs8804236).
Of the associated SNPs, three were intronic (rs24305581,

rs22302353, rs23892119) and three were synonymous cod-
ing SNPs, (rs23901704, rs22686871 rs8804236, Table 2).

Genotype association
Genotype analysis revealed a significant association with
all of the SNPs identified above (p<0.05, Figure 1). In the
Bichon Frise, the ‘T’ allele of SNP rs23901704 was asso-
ciated with reduced risk for diabetes, with the TT and
TC genotypes being found in 4.8% and 38.1% of the con-
trols respectively. These two genotypes were not found
in any of the cases, where all of the diabetic dogs of this
breed carried the CC genotype compared to 57.1% of
the controls (Figure 1). In the Samoyed, the ‘C’ allele of
SNP rs23892119 was associated with increased risk for
diabetes and represented 11% of the case population al-
leles; this allele was not found in the controls (Table 2).
For the genotype frequencies, the ‘C’ allele was found in
only a small proportion of the case population with the
TC and CC genotypes representing only 11.4% and 5.7%,
respectively. The TT genotype represented 100% of the
control genotypes and 82.9% of the case genotypes
(Figure 1). The ‘G’ allele of SNP rs8804236 was associ-
ated with diabetes in the Miniature Dachshund (Table 2).
It represented 14% of the case alleles and 36% of the
control alleles and the GG homozygous genotype was
more common in the control population (29.6%) than in
the cases (2.7%). The GA heterozygous genotype was more
common in the cases (21.6%) than the controls (3.8%); the
AA homozygous genotype represented 75.5% and 69.2% of
the cases and controls respectively (Figure 1).
Three SNPs were associated with diabetes in the

Cocker Spaniel breed (Table 2). For SNPs rs22302353
and rs22686871, the major allele homozygote (GG and
TT respectively) was more common in the cases than
the controls and for rs22686871, it represented 100% of
the case genotypes, compared to 78.5% of the controls
(Figure 1). For SNP rs24305581, the minor allele (‘A’)
was found in 69.7% of the case genotypes (AA+AG) vs.
39.4% of the control genotypes and the GG genotype
was more common in the controls (60.6%) than the cases
(29.3%, Figure 1). The heterozygous genotype for this SNP
represented more than 50% of the case genotypes but only
33.3% of the control genotypes. Analysis of genotype com-
binations across these three associated markers in this
breed did not identify any genotype combinations that
were more or less common in either the case or the con-
trol populations, indicating that the associations are inde-
pendent of each other (data not shown).

Discussion
Some cases of canine diabetes share several similarities
with the monogenic forms of human diabetes, known as
maturity onset diabetes of the young (MODY). To date,
however, there is no reported evidence of monogenic
diabetes association studies in dogs. We identified six ca-
nine allelic associations to genes that are causative for
human monogenic forms of diabetes, but none of these
associations can fully explain diabetes risk in any given
dog breed. One gene (ZFP57) was associated with two dif-
ferent SNPs in two disparate breeds (Bichon Frise and
Samoyed) and one breed (Cocker Spaniel) had an associ-
ation with three SNPs from three different genes (MTTL1,
PAX4, INS). The allele and genotype frequencies do not
indicate that these associations explain the full susceptibil-
ity to canine breed-related diabetes and suggest that



Table 2 Allelic associations

Minor/associated
allele

Frequency Major
allele

p-values Odds
ratio

Gene CFA Position (bp) Annotation Case Control Raw Bonferroni Permutation 95% CI

Bichon Frise

rs23901704 ZFP57 35 26,267,827 Syn. coding T 0.00 0.24 C 2.58E-04 7.21E-03 4.30E-03 nc nc

Cocker Spaniel

rs24305581 MTTL1 5 82,755,249 Intronic A 0.44 0.23 G 3.73E-04 1.05E-02 1.13E-02 2.67 1.54-4.61

rs22302353 PAX4 14 8,718,207 Intronic A 0.09 0.33 G 6.45E-06 1.81E-04 3.00E-04 0.21 0.10-0.43

rs22686871 INS 18 46,324,586 Syn. coding G 0.00 0.13 T 7.22E-05 2.02E-03 1.90E-03 nc nc

Miniature Dachshund

rs8804236 HNF4A 24 31,897,491 Syn. coding G 0.14 0.36 A 1.45E-03 4.62E-02 4.31E-02 0.28 0.12-0.63

Samoyed

rs23892119 ZFP57 35 26,270,002 Intronic C 0.11 0.00 T 1.55E-04 5.10E-03 5.50E-03 nc nc

CFA = canine chromosome number: Permutations: n=10,000: CI = confidence interval: Syn. Coding = synonymous coding SNP; nc = not calculable as one of the populations does not carry one of the alleles. Allele
associations are calculated using the minor allele as a reference.
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Figure 1 Genotype distribution of associated SNPs in diabetic cases and controls of specified breeds.
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canine diabetes is a polygenic trait with multiple genes
conferring susceptibility. They could suggest, however,
that a proportion of the dogs within a breed have a mono-
genic form of diabetes and that the remainder of the breed
have a polygenic form of the condition. This requires fur-
ther investigation for better clarification.
Associations within the Cocker Spaniel breed could

suggest that three types of monogenic diabetes co-exist
within this breed if, for example, they were in LD with
the causative SNP rather than being the actual causative
SNP. This seems highly unlikely however, given the re-
ported genetic uniformity of pedigree dog breeds, al-
though genome-wide analysis (GWA) of Cocker Spaniels
within our overall sample population has identified three
distinct clusters of Cocker Spaniels when viewed on a
multi-dimensional scaling plot (Jonathan Massey, unpub-
lished data). The representation of three clusters following
GWA indicates the presence of genetic stratification
within the breed and could explain, in part, the association
of three different genes, each representing a distinct type
of diabetes within this breed in which the respective genes
are contributory to diabetes susceptibility within a cluster
but that other unidentified genes are also contributory.
The lack of GWA data on the specific dogs used in this
candidate gene study prevents the stratification of this co-
hort into genome-wide sub-populations but could be a
useful investigation strategy for future studies.
Three of the associated SNPs were intronic (rs24305581,

rs22302353, rs23892119, Table 2) and while the specific
function of these SNPs is unknown at the current time, in-
tronic SNPs are known to affect gene expression through
regulatory elements and have been shown to activate cryp-
tic splice sites, leading to alternative splicing [56].
The other three associated SNPs were synonymous cod-

ing SNPs (rs23901704, rs22686871 rs8804236, Table 2)
and it is well documented that synonymous SNPs affect
gene function through mRNA splicing and can also affect
precursor mRNA splicing, RNA stability and structure
and protein folding. These synonymous SNPs could,
therefore, result in ectopic mRNA splice sites and generate
null, antagonising or agonistic protein isoforms leading to
the diabetic disease phenotype. They could equally affect
mRNA stability and subsequently the amount of available
protein transcript could be increased or decreased or
they could result in defective protein that do not func-
tion properly.
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The majority of breeds used in this analysis were not
associated with the candidate genes that were selected.
A monogenic type of diabetes could still exist within
these breeds, but as yet the causative gene has not yet
been identified. Alternatively it could be that the canine
version of the causative gene was insufficiently anno-
tated at the time of study and thus not included in the
present study. An example of the latter is glucokinase
which would be a good candidate gene, once the canine
GCK sequence (XM_846042.2) and its chromosomal lo-
cation have been better resolved (CanFam 3.1, http://
www.ncbi.nlm.nih.gov/gene/606490).
The limited number of associations with monogenic dia-

betes susceptibility genes could also indicate that canine
diabetes is largely polygenic in most breeds and could also
be subject to environmental influences. The finding of a
small number of significant gene associations, and even
some of the associations not retained following statistical
correction, may indicate that these genes represent small
risk contributions to a larger undiscovered polygenetic
aetiology. This is further supported by the allele frequen-
cies of the non-associated breeds in the study which are
provided as additional information (Additional file 1: Table
S1) and show that the associated alleles are often present
in the other breeds but do not reach significance. In some
breeds, the allele that is associated with diabetes in one
breed is found at equal frequency in cases and controls of
a different breed. For example, SNP rs23901704 showed an
association to diabetes in the Samoyed (Table 2) with the
minor allele (C) being found at a frequency of 0.11 in the
cases only. This same allele (C) was found at similar fre-
quencies for both controls and cases respectively in the
Border collie (0.2 and 0.17), Labrador (0.17 vs. 0.22), Mini-
ature schnauzer (0.36 vs. 0.34), Samoyed (0.15 vs. 0.17)
Springer Spaniel (0.08 vs. 0.12), West Highland white
terrier (0.16 vs. 0.18) and Yorkshire terrier (0.09 vs. 0.06).
Similar trends are seen for the other associated SNPs in
the different breeds.
A number of immunity-related genes, including the

dog leukocyte antigen (DLA) have already been associ-
ated with canine diabetes in some breeds [57-61]. This is
not surprising, however, given the pathogenesis of the
condition and the potential immune-mediated destruc-
tion of pancreatic beta cells. Many of the cytokine SNPs
that have been associated with an increased risk of
developing canine diabetes are from the Th2 subset
[57-60]. This is important because the Th1-Th2 balance
is considered to be instrumental in the development of
this condition and diabetes is believed to be initiated by
Th1 cytokines.
To achieve significant power in genome-wide associ-

ation studies (GWAS) to identify genes and estimate the
size of their contribution in complex polygenic conditions,
human genetic analysis cohorts often require thousands of
cases and controls. This is not the case in GWAS studies
of pedigree dog breeds where the sample size may be as
few as a hundred and power is increased when taking into
account the small number of founder members for a given
breed, the high level of inbreeding and the extended link-
age disequilibrium and haplotype structure that exists in
pedigree dog breeds [29]. It has been suggested that even
fewer cases and an equal number of controls are sufficient
to detect the disease allele for a simple Mendelian reces-
sive trait [32]. With the exception of the Staffordshire bull
terrier and Doberman, all of our breed cohorts contained
more than 20 cases and controls, suggesting we should
have had sufficient statistical power to detect associa-
tions for a monogenic disorder. The limited number of
associations identified in this study is therefore most
likely to be due to canine diabetes being a polygenic
trait in most dog breeds.
This is the first multi-breed candidate gene analysis to

investigate gene homologues in the dog that are equiva-
lent to human monogenic forms of diabetes. We have
evidence that some of the same genes that have been asso-
ciated with susceptibility to MODY and NDM in humans
are also associated with canine diabetes, although the
number of breeds where this applies is limited and it is
more likely that canine diabetes is a polygenic trait. Re-
cruitment of cases or controls to such studies is difficult
unless performed under a Home Office animal licence
and most veterinary blood samples submitted to labora-
tories for DNA isolation are generally residual from other
diagnostic tests.

Conclusions
The underlying aetiology and pathogenesis of canine dia-
betes have not been fully established and while insulin de-
ficiency is a consistent feature, it remains a heterogeneous
condition. The presence of specific breed predispositions
and phenotypes within breeds suggests an underlying gen-
etic basis for diabetes susceptibility but this susceptibility
varies between breeds and is likely to result from the inter-
actions of multiple genes. The current study and previous
candidate gene studies have identified breed-specific
genetic associations with the condition, but none of the
identified associations can fully explain canine diabetes
susceptibility. Ongoing GWA studies are expected
to identify new loci that will further explain the breed
susceptibility to diabetes in dogs.

Methods
Study design
Blood samples from diabetic dogs were selected from
the UK Canine Diabetes Register and Archive (Royal
Veterinary College, University of London). Diagnosis of
diabetes was based on consistent clinical signs (polyuria,
polydipsia and weight loss) and documented
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hyperglycaemia (i.e. > 9 mmol/l) with glucosuria. Entire
females were excluded from the study to eliminate dogs
suffering from dioestrus diabetes, an insulin-resistance
form of the disease. Dog samples representing seventeen
breeds were selected from a larger collection of diabetic
samples on the basis of providing a sample size n ≥ 15
in each breed group (Table 1). Breed-matched, control
samples (without diabetes) were selected from a large
archive of DNA samples (http://www.liv.ac.uk/dna_archive_-
for_companion_animals/) UK DNA Archive for Companion
Table 3 Genes and SNPs used in the study and type of huma
gene

Gene Protein SNP IDs Ty

ABCC8 Sulfonylurea receptor 1 rs9183439 rs22988565 PN

rs22993873 rs9044450

BLK B lymphoid tyrosine kinase rs23277058 rs23242723 MO

rs23228211 rs23268052

Cel Carboxyl ester lipase rs8843005 rs8843006 MO

rs24549495

EIF2AK3 Eukaryotic translation rs22578314 rs9179252 PN

initiation factor 2a kinase rs22578182 rs22566811

FOXP3 Forkhead box P3 rs24618205 rs24596299 PN
po

rs24612921

HNF1A Hepatocyte nuclear factor 1a rs23350532 rs9013694 MO

rs23309484

HNF1B Hepatocyte nuclear factor 1b rs24537168 rs24585301 MO
ma

rs24537175 rs24585484

HNF4A Hepatocyte nuclear factor 4a rs23214782 rs23200327 MO

rs8804236 rs23200360

rs23214781 rs9006559

INS Insulin rs22686871 PN

KLF11 Kruppel-like factor 11 rs22598321 rs8803647 MO

MTTL1 Transfer RNA for protein rs8648077 rs8884972 Mi
wi

translation rs24305581

PAX4 Paired box 4 rs22302371 rs22302353 MO

PDX1 rs8837751 rs8837750 MO

Insulin promoter factor 1 rs23247540

PTF1A Pancreas-specific rs8955054 rs8955053 PN

transcription factor 1a rs8955055

RFX6 Regulatory factor X6 rs8928516 rs21958946 PN
int

rs21890992

WFS1 rs24739532 PN
de

Wolframin

ZFP57 Zinc finger protein 57 rs23901704 rs23892119 TN

rs23892118 rs23901705

ZAC1/PLAG1 Pleiomorphic adenoma
gene-like 1

rs23483681 TN

PNDM: Permanent neonatal diabetes; TNDM: Transient neonatal diabetes; MODY: M
Animals, Universities of Manchester and Liverpool) which
collects samples from animals being treated for a range
of conditions. For this cohort, controls were selected as sam-
ples from dogs that were older than 7 years of age and had
been diagnosed with (and were responding to treatment for)
non-autoimmune, non-endocrine conditions. Conditions
permitted for inclusion were those where the clinical signs
were least likely to present with a diabetic phenotype and
included, but was not limited to, hip dysplasia, cruciate
rupture and neurological dysfunction (epilepsy). It was not
n monogenic diabetes that has been associated with the

pe of monogenic diabetes in humans Associated literature

DM, TNDM [33]

[34]

DY 11 [35]

[36]

DY 8 (with exocrine dysfunction) [37]

[38,39]

DM (with epiphyseal dysplasia) [40]

DM (X-linked with immune-dysregulation,
lyendocrinopathy, enteropathy)

[41]

[42]

DY 3 [43]

[20]

DY 5 (also with renal dysfunction, genital
lformations) and PNDM

[44]

DY 1 [43]

[45]

[16]

DM, MODY [23]

DY 7 [46]

tochondrial diabetes (maternally transmitted
th deafness)

[47]

[48]

DY 9 [49]

DY 4, PNDM (with pancreatic agenesis) [50]

[21]

DM (with pancreatic and cerebellar agenesis) [51]

DM (with hypoplastic pancreas and gall bladder,
estinal atresia)

[52]

DM (with diabetes insipidus, optic atrophy,
afness)

[53]

[54]

DM [55]

DM

aturity onset diabetes of the young.

http://www.liv.ac.uk/dna_archive_for_companion_animals/
http://www.liv.ac.uk/dna_archive_for_companion_animals/
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possible to test for hyperglycaemia in these retrospectively
recruited samples. Control samples were selected from the
same geographical region as that for the dogs with diabetes,
wherever possible.
Sex and neutered status were not available for all of

the control dogs thus eliminating the possibility of investi-
gating sex bias and it was not possible to assess the re-
latedness of affected dogs as UK Kennel Club registration
numbers were not available for the majority of dogs inves-
tigated. Allelic association was conducted in a breed-by-
breed manner.

DNA extraction
DNA was extracted from residual EDTA blood samples
using either a standard phenol: chloroform method or a
Qiagen QIAamp DNA Blood Midi Kit in accordance with
the manufacturer’s instructions. DNA quality (A260:280)
and concentration were measured using a NanoDrop
(www.nanodrop.com/). All samples had a 260:280 ratio
between 1.6 and 1.9 were diluted to a final concentra-
tion of 5 ng/μl for SNP genotyping.

Candidate gene and SNP selection
Nineteen candidate genes were chosen based on re-
ported associations to human forms of monogenic dia-
betes (Table 3). A total of 65 SNPs were genotyped with
SNP selection being prioritised for inclusion if they were
non-synonymous or synonymous coding SNPs or were
located in the 3’or 5’ UTR. Intronic SNPs were included
in the absence of coding/UTR SNPs and were selected
as those being closest to the intron/exon boundaries on
the assumption that ‘within breed’ linkage disequilib-
rium would extend across the boundaries, as opposed to
conservation or the presence of regulatory elements.
The SNPs used in the analyses are shown in Table 3.

Sequenom genotyping
Primers and probes were designed using Sequenom Assay
Design software Version 3, and synthesised by Sigma-
Aldrich (Poole, UK). Primers were diluted to 100 μM and
plexes pooled to contain 500 nm of each forward and re-
verse primer. Probes were diluted to 400 μM and probe
pools were split into four tiers dependent upon mass.
Probe pools were split into four equal tiers containing
26 μl, 35 μl, 43 μl and 52 μl of probe (low to high mass),
in a final volume of 1.5 ml.
PCR reactions contained 20 ng DNA plated into a 384

well plate. PCRs were performed in 5 μl volumes using an
ABI 9700 cycler (384 well). Reactions contained 0.625 μl
of 10× PCR buffer (with 20 mM MgCl2, Roche), 0.2 μl of
MgCl2 (25 mM), 0.25μl of dNTPs (10 mM), 100 nM of
forward and reverse primer plex, 0.1 μl FastStart Taq
(5 U/μl, Roche) and were amplified as follows: 95°C for 5
minutes; 40 cycles of 95°C for 20 seconds, 56°C for 30
seconds, 72°C for 1 minute; 72°C for 3 minutes. Following
PCR, reactions were treated with 0.3 U/μl shrimp alkaline
phosphatase (SAP) to dephosphorylate remaining dNTPs.
Reactions were incubated at 37°C for 40 minutes, and de-
natured at 85°C for 5 minutes. iPLEX primer extension
was carried out using an ABI 9700 PCR engine. Reactions
contained 0.22× iPLEX buffer, 1x iPLEX termination
mix, primers adjusted for concentration using a four tier
method (0.625 μM, 0.83 μM, 1.04 μM, and 1.25 μM)
and 1× iPLEX enzyme, and were amplified as follows:
94°C for 30 seconds, 40 cycles of 94°C for 5 seconds, 5
cycles of 52°C for 5 seconds, 80°C for 5 seconds, and a
final extension of 72°C for 3 minutes. Samples were di-
luted with 20 μl water and desalted using 6 mg resin be-
fore being centrifuged for 5 minutes at 4,000 rpm and
spotted onto a SpectroCHIP using a Sequenom mass
array nanodispenser (Samsung).

Allelic association analyses
Association analyses and quality checks were carried out
using PLINK [62]. Hardy-Weinberg equilibrium (HWE)
was checked for each breed control group and call rates
were determined for cases and controls for each breed, in-
dependently. SNPs in which the control population was
out of HWE and/or the call rate was below 90% were ex-
cluded from the analyses. Samples were excluded if the
call rate was below 90%. Permutation testing and Bonfer-
roni correction were applied to raw p values and SNPs
were deemed statistically significant if pcorrected<0.05.
Markers showing allelic association were also tested

for a genotype association.

Additional file

Additional file 1: Table S1. Minor allele frequencies for each breed.
Table shows the minor allele, its frequency in controls and cases and the
major allele for each marker in each breed. The number of controls and
cases that were genotyped and passed QC is also shown.
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