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Abstract
Electrical impedance tomography is an imaging method, with which volumetric
images of conductivity are produced by injecting electrical current and
measuring boundary voltages. It has the potential to become a portable
non-invasive medical imaging technique. Until now, implementations have
neglected anisotropy even though human tissues such as bone, muscle and brain
white matter are markedly anisotropic. We present a numerical solution using
the finite-element method that has been modified for modelling anisotropic
conductive media. It was validated in an anisotropic domain against an
analytical solution in an isotropic medium after the isotropic domain was
diffeomorphically transformed into an anisotropic one. Convergence of the
finite element to the analytical solution was verified by showing that the finite-
element error norm decreased linearly related to the finite-element size, as the
mesh density increased, for the simplified case of Laplace’s equation in a cubic
domain with a Dirichlet boundary condition.

Keywords: EIT, FEM, anisotropy, diffeomorphism

1. Introduction

1.1. Background

Different materials have dissimilar electrical conductivity; therefore, conductivity can be
exploited to provide a volume map that differentiates materials of different electrical properties;
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for example, for localizing water in the lung and cerebral blood volume change after visual
or motor functional stimulation (Holder 2005). In electrical impedance tomography (EIT),
the aim is to recover the conductivity inside an object by injecting electrical current and
measuring voltage on the boundary (Borcea 2002). EIT for medical applications has been
successfully applied to image gastric emptying (Mangall et al 1987), gastric acid secretion
and lung ventilation (Metherall et al 1996, Harris et al 1988).

Recovering the volumetric conductivity from measured boundary voltages usually
requires an accurate model that maps a given conductivity distribution onto a set of boundary
voltages. This requires solution for the voltage in the whole domain, which at low frequencies
can be modelled using the generalized Laplace’s equation together with some boundary
conditions (Paulson et al 1992, Somersalo et al 1992). A number of authors have proved
uniqueness of the isotropic inverse conductivity problem (Kohn and Vogelius 1984, 1985,
Sylvester and Uhlmann 1987). Nevertheless, anisotropic conductivities cannot be uniquely
determined by boundary voltages (Lee and Uhlmann 2006) unless some a priori information is
provided (Lionheart 1997) (see (Lionheart 2004, Borcea 2002) for reviews of EIT algorithms).

While it is well known that human tissues such as bone, muscle and brain white matter
are anisotropic, most medical applications have hitherto neglected anisotropy although its
modelling has been suggested for medical (Glidewell and Ng 1995, 1997) and geological
(Pain et al 2003) applications. Avoiding correction for anisotropy of both white matter
and skull has been found to lead to errors of about 10% on the electrical encephalogram
forward solution and to be significantly relevant for inverse source localization (Wolters et al
2006, Wolters 2003), where the white matter anisotropic conductivity tensor was estimated
from diffusion tensor magnetic resonance imaging (Haueisen et al 2002) (Tuch (2002,
Chapter 5). It seems plausible that modelling anisotropy is necessary to obtain an accurate
forward solution for EIT of medical applications and that significant improvements in resulting
image quality may result.

In an isotropic medium, Laplace’s equation can be solved analytically for geometrically
regular objects, for Neumann’s boundary condition in a sphere using Green’s functions
(Kevorkian 2000), and for Dirichlet’s boundary condition in an infinite plane by separation of
variables (Weber and Arfken 2004). EIT for geometrically complicated objects can be solved
numerically using the finite-element method (FEM) with 3D-EIDORS, a MATLAB toolbox
for the 3D EIT problem with modelling of the electrodes (Polydorides and Lionheart 2002).
We are not aware of any published analytical solution for an anisotropic medium. A FEM
solution that modified EIDORS to model anisotropic media has been presented (Abascal and
Lionheart 2004).

1.2. Theory

The field distribution is modelled by combining Maxwell’s equations of electromagnetism
that for the quasi-static approximation lead to generalized Laplace’s equation in an anisotropic
medium

∂i(σij ∂ju) = 0, (1)

where ∂i = ∂/∂xi, summation is understood over the repeated indices, and the conductivity
σ is a symmetric 2-rank tensor

σ =
⎛
⎝σ11 σ12 σ13

σ12 σ22 σ23

σ13 σ23 σ33

⎞
⎠ . (2)
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Thus, a voltage change on the j th direction yields a current density J which is not parallel to
the applied field as given by

Ji = −σij ∂ju. (3)

A weak formulation of generalized Laplace’s equation obtained from Green’s theorem is given
by ∫

�

(∇v)T (σ∇u) =
∫

∂�

vνT (σ∇u), (4)

where ν is the unit outwards normal to the domain surface ∂�, and u, v belong to the Sobolev
space H 1(�) (Braess 1997).

Boundary conditions for EIT that model the injected current at the boundary are based on
the continuum Neumann condition (Cheney et al 1999)

σ
∂u

∂ν
= J on ∂�. (5)

A realistic model accounts for the electrodes contact impedance (Paulson et al 1992, Somersalo
et al 1992). Other possible boundary conditions for Laplace’s equation are the Dirichlet
boundary condition

u = V on ∂� (6)

or a combination of both conditions on different subsets of the boundary.
An important concept when dealing with the conductivity tensor rather than with scalar

conductivity is that the voltage u(x) in the given domain � with the conductivity σ(x) is equal
to a new voltage ũ(x̃) in the transformed domain �̃ with a transformed conductivity σ̃ (x̃),

under a diffeomorphism �, i.e. a smooth and invertible transformation � : � �→ �̃, such that
x̃ = �(x), ũ(x̃) = u(�−1(x̃)), and σ̃ is given by

σ̃ (x̃) =
(

� ′σ� ′T

|det(� ′)|
)

(�−1(x̃)), (7)

where � ′ is the Jacobian of the diffeomorphism � defined as � ′ = ∂x̃/∂x. This can be proved
by defining the LHS of (4) as a bilinear function Sσ (u, v) and applying a diffeomorphism; one
can verify that Sσ̃ (ũ, ṽ) = Sσ (u, v) for the above definition of σ̃ .

1.3. Objective and design

The purpose of this paper is to expand and present a method for incorporation of anisotropy
into a FEM forward solution originally presented in Abascal and Lionheart (2004) and to
validate this empirically. The convergence of the anisotropic FEM solution to an isotropic
analytical solution was tested by applying a diffeomorphic transformation to the isotropic
domain that converted it into an anisotropic one. The Dirichlet boundary value problem was
assumed for simplicity where the starting domain was a cube with isotropic conductivity, for
which an analytical solution can be obtained by separation of variables. Convergence was
verified in two steps: first, by the equivalence of the FEM isotropic and anisotropic solutions,
and then by the convergence of the isotropic FEM onto the analytical solution while increasing
the mesh density.

2. Methods

2.1. Model

Let � be a homogeneous cubic domain of dimensions −1 � x � 1,−1 � y � 1, 0 � z � 2,

with isotropic conductivity σ = diag(1, 1, 1). In this case, Laplace’s equation (1) is simplified
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Figure 1. Imposed Dirichlet boundary condition: voltage u = 1 on the plane z = 0 for
|x| < 1, |y| < 1 (grey), and u = 0 on the rest of the boundary (black), for the isotropic domain
(mesh of 98 843 elements).

as [∂xx +∂yy +∂zz]u(x, y, z) = 0. A Dirichlet boundary condition is assumed where the voltage
is zero on the upper and side planes of the cube and one in the lower plane (figure 1), that is,

u(±1, y, z) = 0 (8)

u(x,±1, z) = 0 (9)

u(x, y, 2) = 0 (10)

u(x, y, 0) = 1, |x| < 1, |y| < 1. (11)

2.2. Analytical solution

An analytical solution to the Dirichlet’s value problem can be solved by separation of variables
(Weber and Arfken 2004)

u(x, y, z) = X(x)Y (y)Z(z). (12)

Thus, by substituting u in Laplace’s equation for an isotropic medium and reordering

1

X

d2X

dx2
= − 1

Y

d2Y

dy2
− 1

Z

d2Z

dz2
= −r2, (13)

where r is a constant. A solution to X(x) can be expressed on the form

X(x) = A cos(rx) + A′ sin(rx). (14)

Since u(±1, y, z) = 0 for all y and z, then X(±1) = 0, leading to A′ = 0 and r = lπ/2,

for l = 1, 3, . . . , which is equivalent to r = (2µ + 1)π/2, for µ = 0, 1, . . . . Therefore, the
solution X(x) is the linear combination

X(x) =
∞∑

µ=0

Aµ cos
[
(2µ + 1)

πx

2

]
. (15)

Similarly for Y (y), by reordering (13) for y

1

Y

d2Y

dy2
= r2 − 1

Z

d2Z

dz2
= −s2, (16)
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and imposing boundary conditions u(x,±1, z) = 0 for all x and z, then Y (±1) = 0, leads to

Y (y) =
∞∑

ν=0

Bν cos
[
(2ν + 1)

πy

2

]
. (17)

A solution to Z(z) is obtained by reordering (16) for z

1

Z

d2Z

dz2
= r2 + s2 = t2, (18)

whose solution is of the form

Z(z) = C exp(tz) + C ′ exp(−tz), (19)

where t is given by

t = tµν = π

2

√
(2µ + 1)2 + (2ν + 1)2. (20)

Applying the boundary conditions u(x, y, 2) = 0 and u(x, y, 0) = 1 for all x and y leads to

Z(z) = 1

1 − exp(−4tµν)
(exp(−tµνz) − exp(−tµν(4 − z))). (21)

The solution to Laplace’s solution is written by combining the coefficients Aµ and Bν with
Dµν as

u(x, y, z) =
∞∑

µ=0

∞∑
ν=0

Dµν cos
[
(2µ + 1)

πx

2

]
cos

[
(2ν + 1)

πy

2

]

× 1

1 − exp(−4tµν)
(exp(−tµνz) − exp(−tµν(4 − z))). (22)

The coefficients Dµν can be determined from the boundary condition u(x, y, 0) = 1,

u(x, y, 0) =
∞∑

µ=0

∞∑
ν=0

Dµν cos
[
(2µ + 1)

πx

2

]
cos

[
(2ν + 1)

πy

2

]
= 1. (23)

Finally, the potential u is given by

u(x, y, z) =
∞∑

µ=0

∞∑
ν=0

16(−1)µ(−1)ν

π2(2µ + 1)(2ν + 1)
cos

[
(2µ + 1)

πx

2

]
cos

[
(2ν + 1)

πy

2

]

× 1

1 − exp(−4tµν)
(exp(−tµνz) − exp(−tµν(4 − z))). (24)

2.3. FEM solution

The weak formulation of the generalized Laplace’s equation with a Dirichlet boundary
condition has zero current on the boundary. Let φi be the shape function for the ith node, such
that φi = 1 at node i and zero elsewhere, by replacing the test function v by the shape functions
φi, for all nodes, and expanding the voltage as u = ∑

j ujφj , where uj is the voltage at node
j, then the FEM formulation (4) becomes∫

�

(∇φi)
T σ∇u =

∑
j

uj

∫
�

(∇φi)
T σ∇φj = 0, (25)

which can be split into boundary ∂� and interior �\∂� vertices,∑
j∈�\∂�

uj

∫
�

(∇φi)
T σ∇φj = −

∑
j∈∂�

uj

∫
�

(∇φi)
T σ∇φj . (26)
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It was computed as

Au = 0, (27)

where A is the system matrix, computed using a modified version of 3D-EIDORS that models
anisotropic objects without considering the electrode contact impedance (Polydorides and
Lionheart 2002, Abascal and Lionheart 2004), and u is the potential on all vertices. Thus, by
dividing the system matrix into blocks for the interior and exterior vertices

Au =
(

A11 A12

A21 A22

) (
u�\∂�

u∂�

)
. (28)

Since u∂� are the boundary conditions, the interior potential was solved as

A11u�\∂� = −A12u∂�. (29)

2.4. Convergence of the anisotropic FEM solution

2.4.1. Convergence of the analytical solution. For the computation of the analytical
solution (24), one needs to select the maximum number of terms used to approximate an
infinite series, given by µν for the maximum number of µ and ν, which here is n. The
convergence of the analytical solution was analysed by computing the difference between
the analytical voltage (24) and the imposed boundary condition (11), on the plane z = 0 for
|x| < 1 and |y| < 1, for which u = 1, as a function of the number of terms n. The rest of
boundary conditions (8)–(10), for which u = 0, were clearly satisfied.

2.4.2. Comparison of isotropic and anisotropic FEM. The FEM solution uiso(x) in the
isotropic domain � with conductivity σ , as given by 3D-EIDORS (Polydorides and Lionheart
2002), was compared to the FEM solution uani(x̃) in the transformed domain �̃ with
conductivity σ̃ (x̃) (7) by

eani
i = 100

∣∣uiso
i (x) − uani

i (x̃)
∣∣∣∣uiso

i (x)
∣∣ , for i = 1, . . . , nI (30)

where nI is the number of interior vertices since in the FEM Dirichlet boundary value problem
the boundary potential is known (29).

A diffeomorphic transformation � was applied to the domain � by mapping the mesh
vertices onto a new mesh in �̃. The same mesh was used for simplicity to test that 3D-EIDORS
(Polydorides and Lionheart 2002), and the modified version that models anisotropic objects
(Abascal and Lionheart 2004), provided the same results; they should agree as the mesh
density is increased. Two nonlinear transformations of a similar form differing only in the
strength were applied. The strength of the transformation was measured by computing the
absolute value of the determinant of the Jacobian of the transformation as a function of the
domain, |det(� ′)| = |det(σ̃ )|, which appears in (7) as a consequence of the transformation
when one substitutes dx̃ = |det(� ′)|dx in equation (4). The two transformations were⎧⎪⎨

⎪⎩
x̃ = 1.2 exp(x) + 0.7y + 0.4z

ỹ = −0.2x + 1.5 exp(y) + 0.3z

z̃ = −0.3x − 0.2y + 1.2 exp(z)

(31)

⎧⎪⎨
⎪⎩

x̃ = 13.8 exp(x) + 15.7y + 18.4z

ỹ = −0.2x + 23.5 exp(y) + 0.3z

z̃ = −0.3x − 0.2y + 9.2 exp(z).

(32)
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The transformed conductivity σ̃ was computed elementwise by using (7) where � ′ was
calculated as follows. Let w be a vector in �, its transformed vector w̃ in �̃ is given by the
push forward or Jacobian � ′ as

w̃ = � ′w. (33)

In 3D, � can be completely characterized by knowing the push forward of three independent
vectors. Let ri = (xi, yi, zi)

T be the coordinates of the four vertices of a tetrahedron �k, for
i = 0, 1, 2, 3, then taking r0 as a reference, W = [r3 − r0, r2 − r0, r1 − r0] is a 3-by-3 matrix
whose columns are three independent vectors in �k. Similarly, W̃ = [r̃3 − r̃0, r̃2 − r̃0, r̃1 − r̃0] is
defined as a matrix whose columns are the transformed vectors in �̃k where r̃i = (x̃i , ỹi , z̃i )

T .

Thus, � ′ was computed elementwise as

�́ = W̃W−1. (34)

2.4.3. Convergence of the FEM solution. Convergence of the FEM solution was studied by
computing the discrepancy between the FEM and analytical solutions while increasing the
mesh density. Two metrics were used for the comparison: the vertex relative error and the
FEM error norm. Let u be the analytical solution and uh the FEM solution, the percentage
relative error was defined for each vertex as

ei = 100

∣∣∣∣ui − uh
i

ui

∣∣∣∣ . (35)

The FEM error norm was approximated as

‖e‖� �
(

N∑
k=1

|e(k)|2Vk

) 1
2

, (36)

where N is the number of tetrahedra, Vk is the tetrahedral volume, and e(k) is the absolute error
of the kth tetrahedral �k computed as the vertex average:

e(k) = 1

4

∑
i∈�k

∣∣ui − uh
i

∣∣. (37)

Defining the element size h as the largest edge in the mesh and imposing a bound on mesh
quality, convergence was verified by studying the dependence of the FEM error on h; we
assumed convergence when the FEM error decreased by decreasing the element size. The
mesh generator guaranteed a lower bound on the shape quality metric (Knupp 2003), of 0.2,

with value 1 when the tetrahedron is equilateral and 0 when the tetrahedron is degenerate.

2.5. FEM mesh

The tetrahedral mesh for the FEM isotropic and anisotropic solutions comparison was
generated using NETGEN (384 elements) (Schöberl 1997). For the comparison of the FEM
with the analytical solution tetrahedral meshes of different mesh densities were created by
using Cubit (2001, Sandia Corporation, http://cubit.sandia.gov/).

3. Results

3.1. Convergence of the analytical solution

The analytical solution converged slowly to the imposed Dirichlet condition (11), on the plane
z = 0 for |x| < 1 and |y| < 1, for which u = 1, because of the voltage jump from u = 1 to
u = 0 for |x| = 1 and |y| = 1 (figure 2). The difference was less than 0.01% for n = 1000,

which was used for the rest of the analysis.

http://cubit.sandia.gov/
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Figure 2. Convergence of the analytical solution (24), u, to the imposed boundary conditions
u(x, y, z) = 1, for z = 0, |x| < 1, |y| < 1 (11), versus the maximum number of terms µ and
ν equal to n used to approximate the infinite series, for nine points at the specified region of the
boundary, for which x and y take the values ±0.5 and 0, which led to the three different curves
because of symmetry of the solution (24), for a mesh of 384 elements. For the rest of the analysis,
10002 terms (n = 1000) were used to approximate u.

3.2. Comparison between the FEM isotropic and anisotropic solutions

The FEM anisotropic solution u(x̃) in the transformed domain �̃ was verified to be equal (30),
up to floating point accuracy, to the isotropic FEM solution u(x) in �. The relative error is
of the order 10−13% for the nonlinear transformation (31) where errors were larger for those
vertices for which the determinant of the Jacobian of the transformation det(� ′) was larger
(figure 3(b)). Increasing the strength of the transformation (32), giving an increase of det(� ′)
of several orders of magnitude (figure 3(c)) with respect to the previous one (figure 3(a)), led
to a relative error of the order 10−12% (figure 3(d)).

3.3. Comparison of analytical and FEM solutions

The FEM error norm ‖e‖� decreased proportionally to the element size h, as the number
of elements increased (table 1), following the relation ‖e‖� ∝ hα where a linear fit led to
α = 1.1 with r = 0.98 (figure 4). The maximum percentage relative error at each vertex did
not decrease, as the mesh density increased (table 1), which may be due to the fact that the
FEM solution cannot accurately model, for the given element size, the boundary conditions
at the lower plane of the cube, at z = 0, where there is voltage jump from u = 1 to u = 0.

However, the FEM error norm that measures the total error decreased linearly.

4. Discussion

A method for an empirical validation of the FEM forward solution for Laplace’s equation in
an anisotropic medium has been presented. The convergence of the anisotropic FEM solution
to an analytical solution was verified for the case of a homogeneous cube in terms of the
relative vertex error and the FEM error norm. The isotropic solution in the given domain and
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(a) (b)

(c) (d)

Figure 3. Percentage relative voltage difference eani (30) between the FEM isotropic solution
u(x) in � for σ = 1 and the FEM anisotropic solution u(x̃) in the transformed domain �̃ for
σ̃ (x̃) = � ′σ(x)� ′T /|det(� ′)| (7), and absolute value of the determinant of the Jacobian of the
transformation |det(� ′)| (dash line, which was scaled as |det(� ′)|(max(eani)/ max(|det(� ′)|)) to
be plotted together with the relative error), for the interior vertices, where vtx no. is the number
of interior vertices, under two nonlinear transformations given by (b) (31) and (d) (32). The term
|det(� ′)| = |det(σ̃ )| measures the strength of the transformation where the transformation (a) (31)
is of lower strength than the transformation (c) (32). (a) |det(� ′)| for the anisotropic domain given
by the transformation (31). (b) Relative voltage difference (30) and normalized |det(� ′)| (dashed
line) for the interior vertices. (c) |det(� ′)| for the anisotropic domain given by the transformation
(32). (d) Relative voltage difference (30) and normalized |det(� ′)| (dashed line) for the interior
vertices.

the anisotropic solution in the transformed domain have been shown to be equivalent for a
nonlinear transformation. The FEM error norm decreased proportionally to the tetrahedral
size. In contrast, the local relative vertex error did not decrease as the mesh density increased.

The goodness of the analytical solution was studied versus the number of basis functions
in x and y used to approximate the infinite series. The error to fit the imposed boundary
conditions was less than 0.01% when more than 1000 terms were employed. Since the
number of terms in the series increases with the power of two of the number of basis functions,
the analytical solution was approximated using 1000 basis functions. In addition, it presented
a slow convergence because the imposed boundary conditions at the z = 0 plane had a voltage
jump from one, in the interior of the plane, to zero, at the edges. The error of the analytical
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Figure 4. Log–log plot of the FEM error norm ‖e‖� (36) versus the element size h (the same as
in table 1) and a linear fit ‖e‖� ∝ h1.1 with correlation coefficient r = 0.98.

Table 1. FEM error norm %‖e‖� (36) by increasing the number of elements N, which yielded a
relation ‖e‖� ∝ hα (figure 4), where h is the element size; and the maximum percentage relative
vertex error max |ei | (35).

N % max |ei | ‖e‖� h

495 35.69 0.0326 0.88
2 985 24.01 0.0228 0.52
8 025 34.93 0.0170 0.37

13 747 29.88 0.0135 0.32
35 864 28.13 0.0099 0.26
55 863 33.92 0.0087 0.24
98 843 25.78 0.0060 0.21

353 616 35.09 0.0051 0.14

solution was significantly smaller than the error between the analytical and FEM solutions, so
the analytical solution was accurate enough for testing the FEM solution.

The extension to the EIT problem from these results, that is, considering Neumann’s
boundary conditions together with the electrode contact impedance, can be done since in EIT
formulation the conductivity tensor appears only in the main part of the system matrix, which
has been tested here.

The convergence of the anisotropic FEM solution to the analytical solution was studied
in two steps. First, the FEM solution in the isotropic domain was equal up to floating
point accuracy to the anisotropic FEM solution in the transformed domain under a nonlinear
transformation. Because the difference was larger for the more distorted elements and by
increasing the magnitude of the transformation, such that the determinant of the first derivatives
of the transformation increased by several orders of magnitude, then the difference can be
explained by the floating operations. Second, the FEM solution converged to the analytical
solution with FEM error decreasing proportionally to the element size. However, the vertex
error did not decrease accordingly, which could be due to the difficulty of the FEM solution
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to model the boundary conditions for the considered element sizes. From the decrease of the
FEM error, we can conclude that the FEM solution converged to the analytical solution.

The results verified that the anisotropic FEM solution is accurate enough for modelling
the forward problem in an anisotropic medium. We plan to employ this approach in studying
the influence of modelling anisotropy for EIT of the head, for which bone tissues such as the
skull and white matter are anisotropic.

If, as in the case for inverse source modelling of the EEG (Wolters et al 2006, Wolters
2003), it transpires that modelling of anisotropy makes a significant difference, we plan to
incorporate this into our forward model for linear (Bagshaw et al 2003) and nonlinear image
reconstruction in ongoing trials of EIT in imaging in acute stroke (Romsauerova et al 2006),
epileptic seizures (Fabrizi et al 2006) and fast electrical activity in the brain (Gilad et al 2005).
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