39 research outputs found

    Occurrence and Functions of PACAP in the Placenta

    Get PDF
    Pituitary adenylate cyclase activating polypeptide (PACAP) is an endogenous neuropeptide with a widespread distribution both in the nervous system and peripheral organs. The peptide is also present in the female gonadal system, indicating its role in reproductive functions. While a lot of data are known on PACAP-induced effects in oogenesis and in the regulation of gonadotropin secretion at pituitary level, its placental effects are somewhat neglected in spite of the documented implantation deficit in mice lacking endogenous PACAP. The aim of the present review is to give a brief summary on the occurrence and actions of PACAP and its receptors in the placenta. Radioimmunoassay (RIA) measurements revealed increased serum PACAP levels during the third trimester and several changes in placental PACAP content in obstetrical pathological conditions, further supporting the function of PACAP during pregnancy. Both the peptide and its receptors have been shown in different parts of the placenta and the umbilical cord. PACAP influences blood vessel and smooth muscle contractility of the uteroplacental unit and is involved in regulation of local hormone secretion. The effects of PACAP on trophoblast cells have been mainly studied in vitro. Effects of PACAP on cell survival, angiogenesis and invasion/proliferation have been described in different trophoblast cell lines. PACAP increases proliferation and decreases invasion in proliferative extravillous trophoblast cells, but not in primary trophoblast cells, where PACAP decreased the secretion of various angiogenic markers. PACAP pretreatment enhances survival of non-tumorous primary trophoblast cells exposed to oxidative stress, but it does not influence the cell death-inducing effects of methotrexate in proliferative extravillous cytotrophoblast cells. Interestingly, PACAP has pro-apoptotic effect in choriocarcinoma cells suggesting that the effect of PACAP depends on the type of trophoblast cells. These data strongly support that PACAP plays a role in normal and pathological pregnancies and our review provides an overview of currently available experimental data worth to be further investigated to elucidate the exact role of this peptide in the placenta

    Effect of apoptogenic stimuli on colon carcinoma cell lines with a different c-myc expression level

    No full text
    We have recently demonstrated that a high c-myc endogenous amplification level confers an apoptosis-prone phenotype to serum-deprived colon carcinoma SW613-S cells. The aim of this study was to gain new insights into the features of c-myc-dependent apoptosis, by extending our analysis to different apoptogenic stimuli. The study was carried out on clones, derived from the human colon carcinoma SW613-S cell line, which harbor different levels of endogenous c-myc amplification, and on isogenic cell lines with an enforced c-myc overexpression. Our results indicate that cells with endogenous or transfected exogenous c-myc overexpression (SW613-12A1 and -2G1mycP2Tu1 cell lines, respectively), activate the apoptotic machinery in response to the treatment with etoposide, doxorubicin and vitamin D3, which induce apoptosis through the death receptor Fas. The low levels of c-myc expression present in SW613-B3 and -B3mycC5, seem to be unable to activate Fas-mediated apoptosis, thus suggesting that only a high c-myc expression can bypass the lack of Fas receptor. Apoptosis induction mediated by DNA damage and long-term culture was independent of c-myc expression. A pathway of apoptosis characterized by the activation of the enzyme L-DNase II, was observed in both 12A1 and B3 cell lines

    Supplementary Material for: Identification and Analysis of Two Novel Sites of Rat GnRH Receptor Gene Promoter Activity: The Pineal Gland and Retina

    No full text
    <b><i>Background and Aims:</i></b> In mammals, activation of pituitary GnRH receptor (GnRHR) by hypothalamic GnRH increases the synthesis and secretion of LH and FSH, which, in turn, regulate gonadal functions. However, GnRHR gene <i>(Gnrhr)</i> expression is not restricted to the pituitary. <b><i>Methods:</i></b> To gain insight into the extrapituitary expression of <i>Gnrhr</i>, a transgenic mouse model that expresses the human placental alkaline phosphatase reporter gene driven by the rat <i>Gnrhr</i> promoter was created. <b><i>Results:</i></b> This study shows that the rat <i>Gnrhr</i> promoter is operative in two functionally related organs, the pineal gland, as early as embryonic day (E) 13.5, and the retina where activity was only detected at E17.5. Accordingly, <i>Gnrhr</i> mRNA were present in both tissues. Transcription factors known to regulate <i>Gnrhr</i> promoter activity such as the LIM homeodomain factors LHX3 and ISL1 were also detected in the retina. Furthermore, transient transfection studies in CHO and gonadotrope cells revealed that OTX2, a major transcription factor in both pineal and retina cell differentiation, is able to activate the <i>Gnrhr</i> promoter together with either CREB or PROP1, depending on the cell context. <b><i>Conclusion:</i></b> Rather than using alternate promoters, <i>Gnrhr</i> expression is directed to diverse cell lineages through specific associations of transcription factors acting on distinct response elements along the same promoter. These data open new avenues regarding GnRH-mediated control of seasonal and circadian rhythms in reproductive physiology
    corecore