64 research outputs found

    Halogen ligth thermogravimetric technique for determining the retained water in fine aggregates used for concrete mixing design

    Full text link
    [EN] Measuring the rate of water retention of the aggregates used in mortars and concrete is required to achieve a good mix design. The water retention, specifically absorption, is used to keep constant the water/cement ratio. This paper focuses on the study of a new technique for measuring retained water in fine aggregates. In order to obtain results, the procedure described in the existing standards takes more than 24 h. Additionally, it involves high consumption of heat energy due to the use of drying ovens. Furthermore, the results obtained remain highly variable and therefore discussed by the scientific community.In this research, a novel technique based on a halogen moisture analyzer was implemented. The technique was assessed using an experiment design with a surface response model. The most important factors and levels were identified together with the interactions between them. Finally, the model was validated and the results obtained with this technique were compared with those obtained by conventional techniques in order to verify that they were equivalent.Arias Jaramillo, Y.; Paya Bernabeu, JJ.; Ochoa Botero, JC. (2015). Halogen ligth thermogravimetric technique for determining the retained water in fine aggregates used for concrete mixing design. Journal of Thermal Analysis and Calorimetry: an international forum for thermal studies. 123:127-134. doi:10.1007/s10973-015-4902-8S127134123Djerbi Tegguer A. Determining the water absorption of recycled aggregates utilizing hydrostatic weighing approach. Constr Build Mater. 2012;27:112–6.Kasemchaisiri R, Tangtermsirikul S. A method to determine water retainability of porous fine aggregate for design and quality control of fresh concrete. Constr Build Mater. 2007;21:1322–34.Gonilho Pereira C, Castro-Gomes J, Pereira de Oliveira L. Influence of natural coarse aggregate size, mineralogy and water content on the permeability of structural concrete. Constr Build Mater. 2009;23:602–8.Cortas R, Roiziére E, Staquet S, Hamami A, Delplancke-Ogletree M. Effect of the water saturation of aggregates on the shrinkage induced cracking risk of concrete at early age. Cem Concr Compos. 2014;50:1–9.Black R. The determination of specific gravity using Siphon-Can method. Cem Concr Aggreg. 1986;8:46–50.Saxer E. A direct method of determining absorption and specific gravity of aggregates. 1956;2.Hughes B, Famili H., Part 1—Absorption of concrete aggregates, Part 2—saturated air techniques for determining the absorption of aggregates. In: Absorptions of concrete aggregates. Birmingham University; 1971.Tam VWY, Gao XF, Tam CM, Chan CH. New approach in measuring water absorption of recycled aggregates. Constr Build Mater. 2008;22:364–9.Balcedowiak W. Phase analysis of high-calcium line by TG. J Therm Anal Calorim. 2000;60:70–7.Mendoza O, Tobón JI. An alternative thermal method for identification of pozzolanic activity in Ca(OH)2/pozzolan pastes. J Therm Anal Calorim. 2013;114:589–96.Kosmatka SH, Kerkhoff B, Panarese W, MacLeod NF, McGrath RJ, Design and control of concrete mixtures. 7rd ed. Cement association of Canada. 2002. pp. 88.Cárdenas JI, Restrepo C. Patrimonio geológico y patrimonio minero de la cuenca carbonífera del suroeste antioqueño, Colombia. Boletín de ciencias de la tierra. 2006;18:91–102 ISSN 0120-3630 .Klein NS, Aguado A, Tollares-Carbonari BM, Real LV. Prediction of the water absorption by aggregates over time: modelling through the use of value function and experimental validation. Constr Build Mater. 2014;69:213–20

    Protective effect of leptin against ischemia-reperfusion injury in the rat small intestine

    Get PDF
    BACKGROUND: The small intestine is extremely sensitive to ischemia-reperfusion (I/R) injury and a range of microcirculatory disturbances which contribute to tissue damage. Previous studies have shown that leptin plays an important physiological role in the microvasculature. The aim of this study was to evaluate the protective effects of leptin in I/R – induced mucosal injury in the small intestine. METHODS: Forty rats were divided into 5 groups (n = 8). Group I was subjected to a sham operation. Following mesenteric ischemia in group II (control); physiologic saline 1 cm(3), in group III; leptin 100 μg/kg, and physiologic saline 1 cm(3), in group IV; N(G)-L-arginine methyl ester (L-NAME) 20 mg/kg, and physiologic saline 1 cm(3), in group V; leptin 100 μg/kg, L-NAME 20 mg/kg, and physiologic saline 1 cm(3 )were given intra-peritoneally. In these groups, an I/R procedure was performed by occlusion of the superior mesenteric artery for 45 min followed by 120 min reperfusion. After reperfusion, the small intestines were resected for malondialdehyde (MDA) and nitric oxide (NO) concentration and histopathologic properties. Mucosal lesions were scored between 0 and 5. Tissue MDA and NO concentration and histopathologic grades were compared statistically. RESULTS: Tissue MDA level significantly increased (P < 0.05), tissue NO level significantly decreased in group V animals, compared to group III animals respectively (P < 0.001). Histopathologically, intestinal injury significantly decreased in the leptin treated ischemic group. CONCLUSION: Leptin can be used safely in mesenteric occlusive diseases, since it induces NO formation and release in mesenteric vessels

    Comparison of EGFR and K-RAS gene status between primary tumours and corresponding metastases in NSCLC

    Get PDF
    In non-small-cell lung cancer (NSCLC), epidermal growth factor receptor (EGFR) and K-RAS mutations of the primary tumour are associated with responsiveness and resistance to tyrosine kinase inhibitors (TKIs), respectively. However, the EGFR and K-RAS mutation status in metastases is not well studied. We compared the mutation status of these genes between the primary tumours and the corresponding metastases of 25 patients. Epidermal growth factor receptor and K-RAS mutation status was different between primary tumours and corresponding metastases in 7 (28%) and 6 (24%) of the 25 patients, respectively. Among the 25 primary tumours, three ‘hotspot' and two non-classical EGFR mutations were found; none of the corresponding metastases had the same mutation pattern. Among the five (20%) K-RAS mutations detected in the primary tumours, two were maintained in the corresponding metastasis. Epidermal growth factor receptor and K-RAS mutations were detected in the metastatic tumours of three (12%) and five (20%) patients, respectively. The expressions of EGFR and phosphorylated EGFR showed 10 and 50% discordance, in that order. We conclude that there is substantial discordance in EGFR and K-RAS mutational status between the primary tumours and corresponding metastases in patients with NSCLC and this might have therapeutic implications when treatment with TKIs is considered

    The global burden of cancer attributable to risk factors, 2010-19: a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF

    Effect of the water saturation of aggregates on the shrinkage induced cracking risk of concrete at early age

    No full text
    This work consists in studying the effect of the water saturation of aggregates on the development of shrinkage and the potential cracking risk of early age ordinary concrete. Different concretes were obtained from a given concrete mixture by changing only the initial degree of saturation of limestone aggregates. Three degrees of saturation were studied, namely: 0% (dry aggregates), 50% (partially saturated aggregates) and 100% (saturated aggregates). From the experimental results, the early age behaviour and the mechanical properties of the concrete strongly depend on the water saturation of aggregates. A relative cracking risk was estimated from a stress-based approach and experimentally assessed parameters. The potential risk of cracking of these different concretes was shown to be different. Even if the total water content is kept constant, the water remaining in the cement paste actually depends on the initial water saturation of aggregates. The early age behaviour of concrete and the development of its early age properties depend on the amount of added water during the mixing. © 2014 Elsevier Ltd. All rights reserved.SCOPUS: ar.jinfo:eu-repo/semantics/publishe
    • …
    corecore