15 research outputs found
A BMP7 variant inhibits tumor angiogenesis in vitro and in vivo through direct modulation of endothelial cell biology
Bone morphogenetic proteins (BMPs), members of the TGF-\u3b2 superfamily, have numerous biological activities including control of growth, differentiation, and vascular development. Using an in vitro co-culture endothelial cord formation assay, we investigated the role of a BMP7 variant (BMP7v) in VEGF, bFGF, and tumor-driven angiogenesis. BMP7v treatment led to disruption of neo-endothelial cord formation and regression of existing VEGF and bFGF cords in vitro. Using a series of tumor cell models capable of driving angiogenesis in vitro, BMP7v treatment completely blocked cord formation. Pre-treatment of endothelial cells with BMP7v significantly reduced their cord forming ability, indicating a direct effect on endothelial cell function. BMP7v activated the canonical SMAD signaling pathway in endothelial cells but targeted gene knockdown using shRNA directed against SMAD4 suggests this pathway is not required to mediate the anti-angiogenic effect. In contrast to SMAD activation, BMP7v selectively decreased ERK and AKT activation, significantly decreased endothelial cell migration and down-regulated expression of critical RTKs involved in VEGF and FGF angiogenic signaling, VEGFR2 and FGFR1 respectively. Importantly, in an in vivo angiogenic plug assay that serves as a measurement of angiogenesis, BMP7v significantly decreased hemoglobin content indicating inhibition of neoangiogenesis. In addition, BMP7v significantly decreased angiogenesis in glioblastoma stem-like cell (GSLC) Matrigel plugs and significantly impaired in vivo growth of a GSLC xenograft with a concomitant reduction in microvessel density. These data support BMP7v as a potent anti-angiogenic molecule that is effective in the context of tumor angiogenesis
Combined platelet-rich plasma and lipofilling treatment provides great improvement in facial skin-induced lesion regeneration for scleroderma patients
Background: The use of stem cells, including mesenchymal stem cells (MSCs), for regenerative medicine is gaining interest for the clinical benefits so far obtained in patients. This study investigates the use of adipose autologous tissue in combination with platelet-rich plasma (PRP) to improve the clinical outcome of patients affected by systemic sclerosis (SSc). Methods: Adipose-derived mesenchymal stem cells (AD-MSCs) and PRPs were purified from healthy donors and SSc patients. The multilineage differentiation potential of AD-MSCs and their genotypic-phenotypic features were investigated. A cytokine production profile was evaluated on AD-MSCs and PRPs from both healthy subjects and SSc patients. The adipose tissue-derived cell fraction, the so-called stromal vascular fraction (SVF), was coinjected with PRP in the perioral area of SSc patients. Results: Histopathological and phenotypical analysis of adipose tissue from SSc patients revealed a disorganization of its distinct architecture coupled with an altered cell composition. Although AD-MSCs derived from SSc patients showed high multipotency, they failed to sustain a terminally differentiated progeny. Furthermore, SVFs derived from SSc patients differed from healthy donors in their MSC-like traits coupled with an aberrant cytokine production profile. Finally, the administration of PRP in combination with autologous SVF improved buccal's rhyme, skin elasticity and vascularization for all of the SSc patients enrolled in this study. Conclusions: This innovative regenerative therapy could be exploited for the treatment of chronic connective tissue diseases, including SSc
Targeting chemoresistant colorectal cancer via systemic administration of a BMP7 variant
Despite intense research and clinical efforts, patients affected by advanced colorectal cancer (CRC) have still a poor prognosis. The discovery of colorectal (CR) cancer stem cell (CSC) as the cell compartment responsible for tumor initiation and propagation may provide new opportunities for the development of new therapeutic strategies. Given the reduced sensitivity of CR-CSCs to chemotherapy and the ability of bone morphogenetic proteins (BMP) to promote colonic stem cell differentiation, we aimed to investigate whether an enhanced variant of BMP7 (BMP7v) could sensitize to chemotherapy-resistant CRC cells and tumors. Thirty-five primary human cultures enriched in CR-CSCs, including four from chemoresistant metastatic lesions, were used for in vitro studies and to generate CR-CSC-based mouse avatars to evaluate tumor growth and progression upon treatment with BMP7v alone or in combination with standard therapy or PI3K inhibitors. BMP7v treatment promotes CR-CSC differentiation and recapitulates the cell differentiation-related gene expression profile by suppressing Wnt pathway activity and reducing mesenchymal traits and survival of CR-CSCs. Moreover, in CR-CSC-based mouse avatars, BMP7v exerts an antiangiogenic effect and sensitizes tumor cells to standard chemotherapy regardless of the mutational, MSI, and CMS profiles. Of note, tumor harboring PIK3CA mutations were affected to a lower extent by the combination of BMP7v and chemotherapy. However, the addition of a PI3K inhibitor to the BMP7v-based combination potentiates PIK3CA-mutant tumor drug response and reduces the metastatic lesion size. These data suggest that BMP7v treatment may represent a useful antiangiogenic and prodifferentiation agent, which renders CSCs sensitive to both standard and targeted therapies
The reach and impact of social marketing and reproductive health communication campaigns in Zambia
Background: Like many sub-Saharan African countries, Zambia is dealing with major health issues, including HIV/AIDS, family planning, and reproductive health. To address reproductive health problems and the HIV/AIDS epidemic in Zambia, several social marketing and health communication programs focusing on reproductive and HIV/AIDS prevention programs are being implemented. This paper describes the reach of these programs and assesses their impact on condom use. Methods: This paper assesses the reach of selected radio and television programs about family planning and HIV/AIDS and of communications about the socially marketed Maximum condoms in Zambia, as well as their impact on condom use, using data from the 2001-2002 Zambia Demographic and Health Survey. To control for self-selection and endogeneity, we use a two-stage regression model to estimate the effect of program exposure on the behavioural outcomes. Results: Those who were exposed to radio and television programs about family planning and HIV/AIDS were more likely to have ever used a condom (OR = 1.16 for men and 1.06 for women). Men highly exposed to Maximum condoms social marketing communication were more likely than those with low exposure to the program to have ever used a condom (OR = 1.48), and to have used a condom at their last sexual intercourse (OR = 1.23). Conclusion: Findings suggest that the reproductive health and social marketing campaigns in Zambia reached a large portion of the population and had a significant impact on condom use. The results suggest that future reproductive health communication campaigns that invest in radio programming may be more effective than those investing in television programming, and that future campaigns should seek to increase their impact among women, perhaps by focusing on the specific constrains that prevent females from using condoms
Role of exosomes released by colon cancer stem cells in the modulation of tumor microenvironment
Home care providers’ experience of translating evidence-based fall prevention programs into practice
DNA methylation of shelf, shore and open sea CpG positions distinguish high microsatellite instability from low or stable microsatellite status colon cancer stem cells.
Aim: To investigate the genome-wide methylation of genetically characterized colorectal cancer stem cell (CR-CSC) lines. Materials & methods: Eight CR-CSC lines were isolated from primary colorectal cancer (CRC) tissues, cultured and characterized for aneuploidy, mutational status of CRC-related genes and microsatellite instability (MSI). Genome-wide DNA methylation was assessed by MethylationEPIC microarray. Results: We describe a distinctive methylation pattern that is maintained following in vivo passages in immune-compromised mice. We identified an epigenetic CR-CSC signature associated with MSI. We noticed that the preponderance of the differentially methylated positions do not reside at CpG islands, but spread to shelf and open sea regions. Conclusion: Given that CRCs with MSI-high status have a lower metastatic potential, the identification of a MSI-related methylation signature could provide new insights and possible targets into metastatic CRC
A perspective analysis: microRNAs, glucose metabolism, and drug resistance in colon cancer stem cells
Metabolism sustains the stemness of Cancer Stem Cells (CSCs), affecting, in turn, tumor heterogeneity, metastatic potential, and therapy resistance. Therefore, it is appealing to target CSCs metabolism as a new therapeutic approach. Consequently, we paid considerable attention to the anti-apoptotic microRNA miR-483-3p, that we reported being regulated by glucose metabolism in liver cancer cells. We investigated the therapeutic potential of targeting miR-483-3p by using the anti-glucose metabolism 2-deoxyglucose (2-DG) molecule in tumor Xenograft mouse model originating from two different Colon-Cancer Stem Cell lines (CCSC lines). We show that 2-DG treatment does not affect CCSCs during tumor formation in immunocompromised mouse models despite its ability to increase the CCSCs apoptotic rate in vitro and decrease miR-483-3p expression in both in vitro and in vivo experimental conditions. The promising in vitro data contrast with in vivo results that show the inefficacy of the treatment. We think that, in our immuno-compromised mouse model, to inhibit the glucose metabolism could become not only ineffective but also counterproductive by creating a selective pressure on the most fitting tumoral clones
DNA methylation of shelf, shore and open sea CpG positions distinguish high microsatellite instability from low or stable microsatellite status colon cancer stem cells.
Aim: To investigate the genome-wide methylation of genetically characterized colorectal cancer stem cell (CR-CSC) lines. Materials & methods: Eight CR-CSC lines were isolated from primary colorectal cancer (CRC) tissues, cultured and characterized for aneuploidy, mutational status of CRC-related genes and microsatellite instability (MSI). Genome-wide DNA methylation was assessed by MethylationEPIC microarray. Results: We describe a distinctive methylation pattern that is maintained following in vivo passages in immune-compromised mice. We identified an epigenetic CR-CSC signature associated with MSI. We noticed that the preponderance of the differentially methylated positions do not reside at CpG islands, but spread to shelf and open sea regions. Conclusion: Given that CRCs with MSI-high status have a lower metastatic potential, the identification of a MSI-related methylation signature could provide new insights and possible targets into metastatic CRC
DNA methylation of shelf, shore and open sea CpG positions distinguish high microsatellite instability from low or stable microsatellite status colon cancer stem cells
Aim: To investigate the genome-wide methylation of genetically characterized colorectal cancer stem cell (CR-CSC) lines. Materials & methods: Eight CR-CSC lines were isolated from primary colorectal cancer (CRC) tissues, cultured and characterized for aneuploidy, mutational status of CRC-related genes and microsatellite instability (MSI). Genome-wide DNA methylation was assessed by MethylationEPIC microarray. Results: We describe a distinctive methylation pattern that is maintained following in vivo passages in immune-compromised mice. We identified an epigenetic CR-CSC signature associated with MSI. We noticed that the preponderance of the differentially methylated positions do not reside at CpG islands, but spread to shelf and open sea regions. Conclusion: Given that CRCs with MSI-high status have a lower metastatic potential, the identification of a MSI-related methylation signature could provide new insights and possible targets into metastatic CRC
