43 research outputs found

    Different modes of interaction by TIAR and HuR with target RNA and DNA

    Get PDF
    TIAR and HuR are mRNA-binding proteins that play important roles in the regulation of translation. They both possess three RNA recognition motifs (RRMs) and bind to AU-rich elements (AREs), with seemingly overlapping specificity. Here we show using SPR that TIAR and HuR bind to both U-rich and AU-rich RNA in the nanomolar range, with higher overall affinity for U-rich RNA. However, the higher affinity for U–rich sequences is mainly due to faster association with U-rich RNA, which we propose is a reflection of the higher probability of association. Differences between TIAR and HuR are observed in their modes of binding to RNA. TIAR is able to bind deoxy-oligonucleotides with nanomolar affinity, whereas HuR affinity is reduced to a micromolar level. Studies with U-rich DNA reveal that TIAR binding depends less on the 2′-hydroxyl group of RNA than HuR binding. Finally we show that SAXS data, recorded for the first two domains of TIAR in complex with RNA, are more consistent with a flexible, elongated shape and not the compact shape that the first two domains of Hu proteins adopt upon binding to RNA. We thus propose that these triple-RRM proteins, which compete for the same binding sites in cells, interact with their targets in fundamentally different ways

    Desert Farming Benefits from Microbial Potential in Arid Soils and Promotes Diversity and Plant Health

    Get PDF
    BACKGROUND: To convert deserts into arable, green landscapes is a global vision, and desert farming is a strong growing area of agriculture world-wide. However, its effect on diversity of soil microbial communities, which are responsible for important ecosystem services like plant health, is still not known. METHODOLOGY/PRINCIPAL FINDINGS: We studied the impact of long-term agriculture on desert soil in one of the most prominent examples for organic desert farming in Sekem (Egypt). Using a polyphasic methodological approach to analyse microbial communities in soil as well as associated with cultivated plants, drastic effects caused by 30 years of agriculture were detected. Analysing bacterial fingerprints, we found statistically significant differences between agricultural and native desert soil of about 60%. A pyrosequencing-based analysis of the 16S rRNA gene regions showed higher diversity in agricultural than in desert soil (Shannon diversity indices: 11.21/7.90), and displayed structural differences. The proportion of Firmicutes in field soil was significantly higher (37%) than in the desert (11%). Bacillus and Paenibacillus play the key role: they represented 96% of the antagonists towards phytopathogens, and identical 16S rRNA sequences in the amplicon library and for isolates were detected. The proportion of antagonistic strains was doubled in field in comparison to desert soil (21.6%/12.4%); disease-suppressive bacteria were especially enriched in plant roots. On the opposite, several extremophilic bacterial groups, e.g., Acidimicrobium, Rubellimicrobium and Deinococcus-Thermus, disappeared from soil after agricultural use. The N-fixing Herbaspirillum group only occurred in desert soil. Soil bacterial communities were strongly driven by the a-biotic factors water supply and pH. CONCLUSIONS/SIGNIFICANCE: After long-term farming, a drastic shift in the bacterial communities in desert soil was observed. Bacterial communities in agricultural soil showed a higher diversity and a better ecosystem function for plant health but a loss of extremophilic bacteria. Interestingly, we detected that indigenous desert microorganisms promoted plant health in desert agro-ecosystems

    Modular protein-RNA interactions regulating mRNA metabolism: a role for NMR

    Get PDF
    Here we review the role played by transient interactions between multi-functional proteins and their RNA targets in the regulation of mRNA metabolism, and we describe the important function of NMR spectroscopy in the study of these systems. We place emphasis on a general approach for the study of different features of modular multi-domain recognition that uses well-established NMR techniques and that has provided important advances in the general understanding of post-transcriptional regulation

    Pub1p C-Terminal RRM Domain Interacts with Tif4631p through a Conserved Region Neighbouring the Pab1p Binding Site

    Get PDF
    Pub1p, a highly abundant poly(A)+ mRNA binding protein in Saccharomyces cerevisiae, influences the stability and translational control of many cellular transcripts, particularly under some types of environmental stresses. We have studied the structure, RNA and protein recognition modes of different Pub1p constructs by NMR spectroscopy. The structure of the C-terminal RRM domain (RRM3) shows a non-canonical N-terminal helix that packs against the canonical RRM fold in an original fashion. This structural trait is conserved in Pub1p metazoan homologues, the TIA-1 family, defining a new class of RRM-type domains that we propose to name TRRM (TIA-1 C-terminal domain-like RRM). Pub1p TRRM and the N-terminal RRM1-RRM2 tandem bind RNA with high selectivity for U-rich sequences, with TRRM showing additional preference for UA-rich ones. RNA-mediated chemical shift changes map to β-sheet and protein loops in the three RRMs. Additionally, NMR titration and biochemical in vitro cross-linking experiments determined that Pub1p TRRM interacts specifically with the N-terminal region (1–402) of yeast eIF4G1 (Tif4631p), very likely through the conserved Box1, a short sequence motif neighbouring the Pab1p binding site in Tif4631p. The interaction involves conserved residues of Pub1p TRRM, which define a protein interface that mirrors the Pab1p-Tif4631p binding mode. Neither protein nor RNA recognition involves the novel N-terminal helix, whose functional role remains unclear. By integrating these new results with the current knowledge about Pub1p, we proposed different mechanisms of Pub1p recruitment to the mRNPs and Pub1p-mediated mRNA stabilization in which the Pub1p/Tif4631p interaction would play an important role

    Control of Flowering and Cell Fate by LIF2, an RNA Binding Partner of the Polycomb Complex Component LHP1

    Get PDF
    Polycomb Repressive Complexes (PRC) modulate the epigenetic status of key cell fate and developmental regulators in eukaryotes. The chromo domain protein LIKE HETEROCHROMATIN PROTEIN1 (LHP1) is a subunit of a plant PRC1-like complex in Arabidopsis thaliana and recognizes histone H3 lysine 27 trimethylation, a silencing epigenetic mark deposited by the PRC2 complex. We have identified and studied an LHP1-Interacting Factor2 (LIF2). LIF2 protein has RNA recognition motifs and belongs to the large hnRNP protein family, which is involved in RNA processing. LIF2 interacts in vivo, in the cell nucleus, with the LHP1 chromo shadow domain. Expression of LIF2 was detected predominantly in vascular and meristematic tissues. Loss-of-function of LIF2 modifies flowering time, floral developmental homeostasis and gynoecium growth determination. lif2 ovaries have indeterminate growth and produce ectopic inflorescences with severely affected flowers showing proliferation of ectopic stigmatic papillae and ovules in short-day conditions. To look at how LIF2 acts relative to LHP1, we conducted transcriptome analyses in lif2 and lhp1 and identified a common set of deregulated genes, which showed significant enrichment in stress-response genes. By comparing expression of LHP1 targets in lif2, lhp1 and lif2 lhp1 mutants we showed that LIF2 can either antagonize or act with LHP1. Interestingly, repression of the FLC floral transcriptional regulator in lif2 mutant is accompanied by an increase in H3K27 trimethylation at the locus, without any change in LHP1 binding, suggesting that LHP1 is targeted independently from LIF2 and that LHP1 binding does not strictly correlate with gene expression. LIF2, involved in cell identity and cell fate decision, may modulate the activity of LHP1 at specific loci, during specific developmental windows or in response to environmental cues that control cell fate determination. These results highlight a novel link between plant RNA processing and Polycomb regulation

    Co-infection of cattle with Fasciola hepatica or F. gigantica and Mycobacterium bovis: A systematic review

    Get PDF
    The liver flukes, Fasciola hepatica and F. gigantica, are common trematode parasites of livestock. F. hepatica is known to modulate the immune response, including altering the response to co-infecting pathogens. Bovine tuberculosis (bTB), caused by Mycobacterium bovis, is a chronic disease which is difficult to control and is of both animal welfare and public health concern. Previous research has suggested that infection with liver fluke may affect the accuracy of the bTB skin test, but direction of the effect differs between studies. In a systematic review of the literature, all experimental and observational studies concerning co-infection with these two pathogens were sought. Data were extracted on the association between fluke infection and four measures of bTB diagnosis or pathology, namely, the bTB skin test, interferon γ test, lesion detection and culture/bacterial recovery. Of a large body of literature dating from 1950 to 2019, only thirteen studies met the inclusion criteria. These included studies of experimentally infected calves, case control studies on adult cows, cross sectional abattoir studies and a herd level study. All the studies had a medium or high risk of bias. The balance of evidence from the 13 studies included in the review suggests that liver fluke exposure was associated with either no effect or a decreased response to all of the four aspects of bTB diagnosis assessed: skin test, IFN γ, lesion detection and mycobacteria cultured or recovered. Most studies showed a small and/or non-significant effect so the clinical and practical importance of the observed effect is likely to be modest, although it could be more significant in particular groups of animals, such as dairy cattle

    KRAS mutations testing in non-small cell lung cancer: The role of Liquid biopsy in the basal setting

    Get PDF
    In advanced stage non-small cell lung cancer (NSCLC) patients, Kirsten Rat Sarcoma Viral Oncogene Homolog (KRAS) testing may soon acquire a predictive significance to select patients for AMG510 treatment. Since tissue samples are not always available, liquid biopsy may represent a viable option for KRAS testing. Here, we review the last three years clinical practice performed on 194 plasma based liquid biopsies by next generation sequencing (NGS) SiRe® panel. In particular, 36 (18.6%) KRAS mutated cases were identified, with an overall median allelic frequency of 5.0% (ranging between 0.2% and 46.8%). No concomitant mutations were observed in the other NSCLC clinical relevant genes included in the SiRe® panel, such as epidermal growth factor receptor (EGFR) and v-Raf murine sarcoma viral oncogene homolog B (BRAF). Exon 2 p.G12C was the most common detected mutation (13/36, 36.1%). In conclusion, our data update and confirm that SiRe® NGS panel represents a robust analytical tool to assess KRAS mutational status on circulating tumor DNA. Further investigation is required to design more cost-effective diagnostic algorithms to harmonize clinical relevant biomarker testing on tissue and blood in advanced stage NSCLC clinical practice

    PD-L1 expression in cell-blocks of non-small cell lung cancer: The impact of prolonged fixation

    No full text
    Introduction: In the selection of non-small cell lung cancer (NSCLC) patients for immunotherapy, specimen processed as cell blocks (CBs) may be the only available material to assess PD-L1 expression. Therefore, optimal CB preparation becomes paramount. In this context, here we assessed whether inadequate fixation time might be one of the pre-analytical factors affecting PD-L1 expression. Methods: Ex vivo CBs from placental (n = 3) and NSCLC (n = 8) resection specimens were obtained. PD-L1 staining was performed on CBs prepared at increasing fixation times (12 hours, 48 hours, 72 hours, 96 hours, 168 hours and 504 hours) using the companion diagnostic SP263 Assay and a validated 22C3 laboratory developed test (LDT). Staining intensity and percentage of positive cells were evaluated. Results: All placental CBs showed moderate to strong PD-L1 positivity in most cells, regardless of the fixation time. Likewise, the percentage of SP263-stained NSCLC cells was similar at all fixation times except for one case, which showed less intense SP263 staining at 168 hours. Conversely, in 5/8 cases, the 22C3 LDT percentage of positive cells and staining intensity decreased at 168 hours and 504 hours. Conclusions: Our results show that fixation time influences the performance of 22C3 LDT on CBs. Thus, we recommend that the fixation time of cytological materials be carefully checked, especially when PD-L1 testing is delayed until the oncology request. Indeed, delays in tissue processing and paraffin embedding may lead to sub-optimal performance of PD-L1 staining on CBs

    Rapid On-site Molecular Evaluation in thyroid cytopathology: A same-day cytological and molecular diagnosis

    No full text
    Background: Thyroid fine-needle aspirates (FNAs) with undetermined morphology can be outsourced to centralized laboratories for comprehensive molecular profiling. When a local, rapid screening rules out easily detectable BRAF and NRAS mutations outsourcing is minimized, leading to cost savings. The fully automated Idylla technology, that does not require trained staff, is an emerging option. However, Idylla platform has only been validated to process formalin fixed paraffin embedded (FFPE) sections. Here we investigate whether also the FNA needle rinse could be genotyped by the same cytopathologist who performs the FNA, a procedure that can be termed rapid on site molecular evaluation (ROME). Methods: To validate this approach, the Idylla BRAF and NRAS Test was performed on the rinses from 25 simulated (bench-top) FNAs, in a first part of the study. Genotyping data were compared with those obtained on matched histological FFPE blocks. The second part of the study was carried out on 25 prospectively collected routine FNAs to assess the performance of the Idylla BRAF and NRAS assay against a gold standard real time polymerase chain reaction method. Results: Idylla NRAS-BRAF Mutation Test was performed on needle rinse as well as histological FFPE blocks. A sensitivity of 88.9%, a specificity of 100.0% were obtained comparing the Idylla NRAS-BRAF Mutation Test on needle rinse to the reference method. Conclusions: The FNA needle rinse can be directly genotyped. This obviates the need of cell block preparation, making possible a rapid combined morphological and molecular evaluation. Since DNA extraction is no longer necessary, the cytopathologist can perform ROME him/herself
    corecore