198 research outputs found

    Background information for Rajshahi City, Bangladesh

    Get PDF
    Land use / Population / Climate / Rain / Water resources / Households / Income / Social aspects / Water quality / Sanitation / Drainage / Waste management / Wastewater / Public health / Bangladesh / Rajshahi City

    Background report: Kurunegala, Sri Lanka

    Get PDF
    Development projects / Water resources / Social aspects / Population / Households / Income / Water supply / Sanitation / Wastewater / Water quality / Public health / Waterborne diseases / Land use / Land tenure / Legislation / Sri Lanka / Kurunegala / Wan Ela / Beu Ela

    Preserved Flora and Organics in Impact Melt Breccias

    Get PDF
    At least seven glass-bearing strata of varying ages occur at different horizons in the Pampean sediments of Argentina dating back to the Miocene. In a strict sense, these impact glasses are melt-matrix breccias composed of partially digested minerals clasts and basement fragments indicative of crater excavation. Ar-40/Ar-39 dating yield ages (+/- 2 sigma) of 6 +/- 2 Ka, 114 +/- 26 Ka, 230 +/- 30 Ka, 445 +/- 21 Ka, 3.27 +/- 0.08 Ma (near Mar del Plata = MdP), 5.28 +/- 0.04 Ma, and 9.21 +/- 0.08 Ma (near Chasico = CH) Where found in place (not reworked), these ages are consistent with the local stratigraphy and faunal assemblages. A striking property of some of these impact glasses is the encapsulation of preserved fragments of floral (and even soft-tissue faunal remains). Here we identify retained organics and describe a likely process of encapsulation and preservation

    New Manganese Silicide Mineral Phase in an Interplanetary Dust Particle

    Get PDF
    Comet 26P/Grigg-Skjellerup was identified as a source of an Earth-crossing dust stream with low Earth-encounter velocities, with peak anticipated fluxes during April in 2003 and 2004 [1]. In response to this prediction, NASA performed dedicated stratospheric dust collections using high altitude aircraft to target potential interplanetary dust particles (IDPs) from this comet stream in April 2003. Several IDPs from this collection have shown unusually low noble gas abundances [2] consistent with the predicted short space exposure ages of Grigg-Skjellerup dust particles [1]. High abundances of large D enrichments [3] and presolar grains [4] in IDPs from this collection are also consistent with an origin from the comet Grigg-Skjellerup. Here we report a new mineral from one of the cluster IDPs of the "Grigg-Skjellerup" collection, L2055. Our report focuses on an unusual manganese-iron-chromium silicide phase that, to our knowledge, has not been observed previously in nature. This unique phase may also shed light on the genesis of the enigmatic low-Fe,Mn-enriched (LIME) olivine that has been previously reported in IDPs and meteorites [5]

    Coordinated Analysis of an Experimentally Space Weathered Carbonaceous Chondrite

    Get PDF
    The surfaces of airless bodies experience solar wind irradiation and micrometeorite impacts, a process collectively known as space weathering. These mechanisms alter the chemical composition, microstructure, and optical properties of surface materials and considerable work has been done to understand this phenomenon in lunar and ordinary chondritic materials. However, ongoing sample return missions Hayabusa2 to asteroid Ryugu and OSIRIS-REx to asteroid Bennu have prompted the need to study the effects of space weathering on hydrated, organic-rich materials, especially in the context of early results. Understanding space weathering of these samples is critical for properly interpreting remote sensing data during asteroid encounters, for sample site selection, and for the eventual study of returned samples. We can better understand space weathering of carbonaceous materials by simulating these processes in the laboratory. Recent experiments have shown that the changes in spectral characteristics of carbonaceous chondrites are not consistent among experiments, suggesting additional work is needed before these results can inform our understanding of spectral variations on asteroidal surfaces. Similarly, substantial work remains to characterize the chemical and microstructural effects of these processes in order to correlate these features with spectral changes. Here, we build on our previous work, presenting new results of the pulsed laser irradiation of the Murchison (CM2) meteorite to simulate micrometeorite impacts and the progressive space weathering of carbonaceous surfaces

    Three-dimensional organotypic co-culture model of intestinal epithelial cells and macrophages to study Salmonella enterica colonization patterns

    Get PDF
    Three-dimensional models of human intestinal epithelium mimic the differentiated form and function of parental tissues often not exhibited by two-dimensional monolayers and respond to Salmonella in key ways that reflect in vivo infections. To further enhance the physiological relevance of three-dimensional models to more closely approximate in vivo intestinal microenvironments encountered by Salmonella, we developed and validated a novel three-dimensional co-culture infection model of colonic epithelial cells and macrophages using the NASA Rotating Wall Vessel bioreactor. First, U937 cells were activated upon collagen-coated scaffolds. HT-29 epithelial cells were then added and the three-dimensional model was cultured in the bioreactor until optimal differentiation was reached, as assessed by immunohistochemical profiling and bead uptake assays. The new co-culture model exhibited in vivo-like structural and phenotypic characteristics, including three-dimensional architecture, apical-basolateral polarity, well-formed tight/adherens junctions, mucin, multiple epithelial cell types, and functional macrophages. Phagocytic activity of macrophages was confirmed by uptake of inert, bacteria-sized beads. Contribution of macrophages to infection was assessed by colonization studies of Salmonella pathovars with different host adaptations and disease phenotypes (Typhimurium ST19 strain SL1344 and ST313 strain D23580; Typhi Ty2). In addition, Salmonella were cultured aerobically or microaerobically, recapitulating environments encountered prior to and during intestinal infection, respectively. All Salmonella strains exhibited decreased colonization in co-culture (HT-29-U937) relative to epithelial (HT-29) models, indicating antimicrobial function of macrophages. Interestingly, D23580 exhibited enhanced replication/survival in both models following invasion. Pathovar-specific differences in colonization and intracellular co-localization patterns were observed. These findings emphasize the power of incorporating a series of related three-dimensional models within a study to identify microenvironmental factors important for regulating infection

    In Situ Coordinated Analysis of Carbonaceous Chondrite Organic Matter

    Get PDF
    Microanalytical studies of carbonaceous chondrites (CCs) have identified a vast array of isotopically, chemically and texturally distinct organic components. These components were synthesized and processed within a range of physical and chemical environments, including the interstellar medium, the solar nebula and within asteroids. The nature and abundance of these molecules can be used to unravel the geochemical and isotopic record of their origins as well as their subsequent evolutionary journey

    Truncated Hexa-Octahedral Magnetite Crystals in Martian Meteorite ALH84001: Evidence of Biogenic Activity on Early Mars

    Get PDF
    The landmark paper by McKay et al. [1] cited four lines of evidence associated with the Martian meteorite ALH84001 to support the hypothesis that life existed on Mars approximately 4 Ga ago. Now, more than five years later, attention has focused on the ALH84001 magnetite grains embedded within carbonate globules in the ALH84001 meteorite. We have suggested that up to approx.25% of the ALH84001 magnetite crystals are products of biological activity [e.g., 2]. The remaining magnetites lack sufficient characteristics to constrain their origin. The papers of Thomas Keprta et al. were criticized arguing that the three dimensional structure of ALH84001 magnetite crystals can only be unambiguously determined using electron tomographic techniques. Clemett et al. [3] confirmed that magnetites produced by magnetotactic bacteria strain MV-I display a truncated hexa-octahedral geometry using electron tomography and validated the use of the multi-tilt classical transmission microscopy technique used by [2]. Recently the geometry of the purported martian biogenic magnetites was shown be identical to that for MV-1 magnetites using electron tomography [6]

    Anatomy of a cluster IDP. Part 2: Noble gas abundances, trace element geochemistry, isotopic abundances, and trace organic chemistry of several fragments from L2008#5

    Get PDF
    The topics discussed include the following: noble gas content and release temperatures; trace element abundances; heating summary of cluster fragments; isotopic measurements; and trace organic chemistry

    Flight Readiness of Mochii ISS-NL Portable Spectroscopic Electron Microscope

    Get PDF
    Electron microscopes (EMs), are workhorse tools serving diverse fields such as materials science, biological science, and engineering. Scanning EMs (SEMs) in particular enable high magnification study and pinpoint chemical analyses of structures down to the nanoscale by providing a powerful blend of strong optical scattering, high native resolution, large depth of focus, and energy-dispersive X-ray spectroscopy (EDS). Mochii is the worlds smallest production electron microscope, scheduled to travel to the International Space Station (ISS) this spring where it will serve as an ISS National Laboratory (ISSNL) microgravity facility on successful demonstration. We previously reported on progress preparing Mochii for space flight, in particular flight integration verifications and science application testing. These included standard integration testing such as electromagnetic interference and flight vibration, and extend to unique functional testing such as magnetic susceptibility and extreme analog environment testing under the sea. Presently, Mochii payload flight hardware has completed testing and was handed over to NASAs ISS payload processing facility in Houston. It will make its way to the the east coast for launch currently scheduled on Space-X CRS-20 for Mission increment 62 in March 2020
    • …
    corecore