1,328 research outputs found

    Full-plane block Kalman filter for image restoration, A

    Get PDF
    Includes bibliographical references.A new two-dimensional (2-D) block Kalman filtering method is presented which uses a full-plane image model to generate a more accurate filtered estimate of an image that has been corrupted by additive noise and full-plane blur. Causality is maintained within the filtering process by employing multiple concurrent block estimators. In addition, true state dynamics are preserved, resulting in an accurate Kalman gain matrix. Simulation results on a test image corrupted by additive white Gaussian noise are presented for various image models and compared to those of the previous block Kalman filtering methods

    Comparison between measured and predicted turbulence frequency spectra in ITG and TEM regimes

    Get PDF
    The observation of distinct peaks in tokamak core reflectometry measurements - named quasi-coherent-modes (QCMs) - are identified as a signature of Trapped-Electron-Mode (TEM) turbulence [H. Arnichand et al. 2016 Plasma Phys. Control. Fusion 58 014037]. This phenomenon is investigated with detailed linear and nonlinear gyrokinetic simulations using the \gene code. A Tore-Supra density scan is studied, which traverses through a Linear (LOC) to Saturated (SOC) Ohmic Confinement transition. The LOC and SOC phases are both simulated separately. In the LOC phase, where QCMs are observed, TEMs are robustly predicted unstable in linear studies. In the later SOC phase, where QCMs are no longer observed, ITG modes are identified. In nonlinear simulations, in the ITG (SOC) phase, a broadband spectrum is seen. In the TEM (LOC) phase, a clear emergence of a peak at the TEM frequencies is seen. This is due to reduced nonlinear frequency broadening of the underlying linear modes in the TEM regime compared with the ITG regime. A synthetic diagnostic of the nonlinearly simulated frequency spectra reproduces the features observed in the reflectometry measurements. These results support the identification of core QCMs as an experimental marker for TEM turbulenc

    Optical absorption in semiconductor quantum dots: Nonlocal effects

    Full text link
    The optical absorption of a single spherical semiconductor quantum dot in an electrical field is studied taking into account the nonlocal coupling between the field of the light and the polarizability of the semiconductor. These nonlocal effects lead to a small size anf field dependent shift and broadening of the excitonic resonance which may be of interest in future high precision experiments.Comment: 6 pages, 4 figure

    3D Architected Carbon Electrodes for Energy Storage

    Get PDF
    The ability to design a particular geometry of porous electrodes at multiple length scales in a lithium‐ion battery can significantly and positively influence battery performance because it enables control over distribution of current and potential and can enhance ion and electron transport. 3D architecturally designed carbon electrodes are developed, whose structural factors are independently controlled and whose dimensions span micrometers to centimeters, using digital light processing and pyrolysis. These free‐standing lattice electrodes are comprised of monolithic glassy carbon beams, are lightweight, with a relative density of 0.1–0.35, and mechanically robust, with a maximum precollapse stress of 27 MPa, which facilitates electrode recycling. The specific strength is 101 kN m kg⁻¹, comparable to that of 6061 aluminum alloy. These carbon electrodes can reach a mass loading of 70 mg cm⁻² and an areal capacity of 3.2 mAh cm⁻² at a current density of 2.4 mA cm⁻². It is demonstrated that this approach allows for independent design of structural factors, i.e., beam diameter, electrode thickness, and surface morphology, enabling control over Li‐ion transport length, overpotential and battery performance, not available for slurry‐based electrodes. This multiscale approach to design of electrodes may open substantial performance‐enhancing capabilities for solid‐ and liquid‐state batteries, flow batteries, and fuel cells

    Adlayer core-level shifts of random metal overlayers on transition-metal substrates

    Get PDF
    We calculate the difference of the ionization energies of a core-electron of a surface alloy, i.e., a B-atom in a A_(1-x) B_x overlayer on a fcc-B(001)-substrate, and a core-electron of the clean fcc-B(001) surface using density-functional-theory. We analyze the initial-state contributions and the screening effects induced by the core hole, and study the influence of the alloy composition for a number of noble metal-transition metal systems. Data are presented for Cu_(1-x)Pd_x/Pd(001), Ag_(1-x) Pd_x/Pd(001), Pd_(1-x) Cu_x/Cu(001), and Pd_(1-x) Ag_x/Ag(001), changing x from 0 to 100 %. Our analysis clearly indicates the importance of final-state screening effects for the interpretation of measured core-level shifts. Calculated deviations from the initial-state trends are explained in terms of the change of inter- and intra-atomic screening upon alloying. A possible role of alloying on the chemical reactivity of metal surfaces is discussed.Comment: 4 pages, 2 figures, Phys. Rev. Letters, to appear in Feb. 199

    Macroscopic coherence of a single exciton state in a polydiacetylene organic quantum wire

    Full text link
    We show that a single exciton state in an individual ordered conjugated polymer chain exhibits macroscopic quantum spatial coherence reaching tens of microns, limited by the chain length. The spatial coherence of the k=0 exciton state is demonstrated by selecting two spatially separated emitting regions of the chain and observing their interference.Comment: 12 pages with 2 figure

    Carrier relaxation in GaAs v-groove quantum wires and the effects of localization

    Get PDF
    Carrier relaxation processes have been investigated in GaAs/AlGaAs v-groove quantum wires (QWRs) with a large subband separation (46 meV). Signatures of inhibited carrier relaxation mechanisms are seen in temperature-dependent photoluminescence (PL) and photoluminescence-excitation (PLE) measurements; we observe strong emission from the first excited state of the QWR below ~50 K. This is attributed to reduced inter-subband relaxation via phonon scattering between localized states. Theoretical calculations and experimental results indicate that the pinch-off regions, which provide additional two-dimensional confinement for the QWR structure, have a blocking effect on relaxation mechanisms for certain structures within the v-groove. Time-resolved PL measurements show that efficient carrier relaxation from excited QWR states into the ground state, occurs only at temperatures > 30 K. Values for the low temperature radiative lifetimes of the ground- and first excited-state excitons have been obtained (340 ps and 160 ps respectively), and their corresponding localization lengths along the wire estimated.Comment: 9 pages, 8 figures, submitted to Phys. Rev. B Attempted to correct corrupt figure

    Local disorder and optical properties in V-shaped quantum wires : towards one-dimensional exciton systems

    Full text link
    The exciton localization is studied in GaAs/GaAlAs V-shaped quantum wires (QWRs) by high spatial resolution spectroscopy. Scanning optical imaging of different generations of samples shows that the localization length has been enhanced as the growth techniques were improved. In the best samples, excitons are delocalized in islands of length of the order of 1 micron, and form a continuum of 1D states in each of them, as evidenced by the sqrt(T) dependence of the radiative lifetime. On the opposite, in the previous generation of QWRs, the localization length is typically 50 nm and the QWR behaves as a collection of quantum boxes. These localization properties are compared to structural properties and related to the progresses of the growth techniques. The presence of residual disorder is evidenced in the best samples and explained by the separation of electrons and holes due to the large in-built piezo-electric field present in the structure.Comment: 8 figure
    corecore