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Introduction

Gyrokinetic turbulence simulations with the CGYRO [2] and GENE [3] codes were per-

formed in order to investigate the dependence of the turbulent transport on magnetic flux sur-

face geometry. The 3-D saturated electric potential fluctuation intensity spectrum and the overall

changes in the energy fluxes were examined to determine the dependence on the elongation and

Shafranov shift of flux surfaces. A new saturation model, used in a quasi-linear evaluation of

the fluxes, is able to reproduce the gyrokinetic fluxes well [4]. The verification and calibration

of this model with a large database of CGYRO turbulence simulations is presented in Ref. [5].

Magnetic geometry of the gyrokinetic equation

The geometric metrics that enter the gyrokinetic equation for general, axisymmetric, closed

flux surface geometry will be shown in this paper to provide the functions that fit the poloidal

dependence of the saturated potential intensity. Because the gyroradius sets the scale for the

plasma turbulence described by gyrokinetics, the wavelength perpendicular to the magnetic

field is much shorter than the wavelength parallel to the magnetic field. This property makes it

convenient to introduce an eikonal approximation for the perpendicular wavevector. The gra-

dient of the eikonal (S) is perpendicular to the magnetic field vector B: B ·∇S = 0. There are

two independent functions that satisfy this constraint. An arbitrary function of the poloidal flux

S = Sx(ψ) and S = n
[
ϕ + Sy

]
where n is a toroidal mode index. The gyro-averaging operator

(Bessel functions) have the argument
∣∣∣∇S
∣∣∣v⊥mac/(ZaeB). This motivates defining a poloidally

varying ion wavevector given by (see Ref.[2] for coordinate definitions)

K2
i⊥ = ρ

2
iB

∣∣∣∇S
∣∣∣2 = [K2

iy +
(

ŝKiyΘ+Kix

)2]
(1)
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Where ρiB =
√

2Ti/mi/ΩB, ΩB = ZieB
mic

are a gyro-radius and gyro-frequency using the ion tem-

perature, mass and charge (Ti,mi,Zi) and using the total magnetic field magnitude B(θ). The

magnetic shear is ŝ = (r/q)dq/dr. The generalized poloidal angle Θ in Eq. 1 is defined to be

zero at the outboard midplane and has a quasi-periodic property derived from Sy. The poloidal

Kiy and radial Kix wavenumber components in Eq. 1 are defined by

Kiy(θ) =
nρiBp

R
=

kyαi

|∇r|
,Kix(θ) = |∇r|krρiB =

kxαi

Gq

Bnorm

Bunit
,Gq =

rB
qRBp

=
B

Bunit|∇r|
(2)

where the factor αi = Znorm
√

mi2Ti/(Zi
√

mnormTnorm) converts from the arbitrary external nor-

malizations used in ky (Znorm,mnorm,Tnorm) to the ion values. The flux surface shape factor Gq

has been introduced to highlight the distinction between the arbitrary normalizing magnetic field

Bnorm and Bunit, which appears in the metric coefficients. The poloidal wavenumber Kiy (Eq. 2)

is the toridal wavenumber n/R normalized by the ion gyroradius with respect to the poloidal

magnetic field ρiBp = ρiBB/Bp. The radial ion wavenumber Kix (Eq. 2) is the gradient normal to

flux surfaces (|∇r|kr = |∇Sx|) normalized to the the total magnetic field ion gyro-radius. Hence,

the full magnetic field gyroradius sets the radial wavelength scale.

3-D saturated electric potential fluctuation intensity

The 3-D model [4] for the saturated electric potential fluctuation amplitude (Φ(θ)kx,ky =

ae|φ̃(θ)kx,ky |/Teρs∆Kiy) (in CGYRO units) has the functional form

Φ(θ)kx,ky =
Φ(θ)0,ky

(1+(kx/kRMS
x )2)

(3)

This form approximates the observed CGYRO spectrum. Here it is assumed that the peak of the

spectrum Φ(θ)0,ky is at kx = 0, which is true for the cases in this database. Note that the normal-

ization of the fluctuation of the electric potential divides by the gyrokinetic expansion parameter

ρs/a because the fluctuations are first order in this parameter (delta-f ordering). A model of the

RMS width (kmodel
x ≈ kRMS

x |θ=0) is given in Ref. [4]. The RMS width of the radial mode number

spectrum (kRMS
x ) is computed at the outboard midplane (θ = 0) by fitting the Lorentzian model

distribution (Eq. 3) to the non-linear spectrum. The effective non-linear mixing rate defined by

γ
eff
ky

= kRMS
x kyΦ(0)0,ky (4)

is also computed directly from the non-linear spectrum at the outboard midplane (θ = 0) . This

has the dimensions of the non-linear ExB advection rate due to the finite ky modes. The model

for the effective mixing rate (G(0)γmodel
ky

≈ γeff
ky

) is given in Ref. [4]. All of the poloidal angle

(θ ) dependence is absorbed into the factor G(θ) that is fit to the amplitude of the peak potential
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fluctuation spectrum at kx = 0: G(θ)≈Φ(θ)0,ky/Φ(0)0,ky . The model for the shape function is

G2(θ) = d1G1(θ) for ky < kycut

=
(

d1G1(θ)kycut +b3d2G2(θ)(ky− kycut)
)
/ky for ky ≥ kycut

(5)

where b3 = 2.4 and the coefficients kycut ,d1,d2 are independent of θ [4]. The two geometric

shape functions are:

G1 =
(B(0)

B(θ)

)4
,G2 =

(Gq(0)
Gq(θ)

)4
(6)

The saturated quasi-linear intensity (Imodel
ky

) needed to evaluate quasi-linear fluxes is the flux

surface average (<>θ ) of the 3-D potential model (Eq. 3) evaluated at its peak at kx = 0.

Imodel
ky

=
〈

G2(θ)
〉

θ

( γmodel
ky

kmodel
x ky

)2
(7)

The reader is referred to Ref. [4] for the details of this new SAT2 saturation model.

Magnetic geometry dependence of turbulent fluxes

The quasi-linear fluxes computed using this new model (SAT2) for the quasi-linear intensity

1.0 1.2 1.4 1.6 1.8 2.0
0

5

10

15

20

kappa

Q
e

1.0 1.2 1.4 1.6 1.8 2.0
0

5

10

15

20

gradr0

Q
e

1.0 1.2 1.4 1.6 1.8 2.0
0

10

20

30

40

50

kappa

Q
i

1.0 1.2 1.4 1.6 1.8 2.0
0

10

20

30

40

50

gradr0

Q
i

Figure 1: The total electron (top) and ion (bottom) energy fluxes for a κ scan (left) and a gradr0 =

1/(1+ dR/dr) scan (right) for CGYRO (black), SAT2 model (large gray) [4] and the previous SAT1

model (small gray)[6]

(Eq. 7), and the quasi-linear flux weights from linear CGYRO calculations of the most unstable
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eigenmode, are compared to the non-linear CGYRO electron and ion energy fluxes in Fig. 1.

The elongation (kappa) and Shavranov shift (dR/dr) of the flux surface were varied. Note that

the fluxes in Fig. 1 use the CGYRO units with Bunit as the normalization for the magnetic field,

which increases with elongation. The de-normalized physical flux for SAT2 still goes down

with elongation just not as strongly as SAT1. Preliminary validation of the SAT2 model finds

that the temperature and density predictions in the edge region of L-mode discharges is greatly

improved. The shortfall of transport [7] in the outer 20% of the flux surfaces, that resulted in

steep temperature gradients with TGLF with earlier saturation models, is eliminated with the

SAT2 model for the limited number of DIII-D cases tested.

Acknowledgements

This material is based upon work supported by the U.S. Department of Energy, Office of Sci-

ence, Office of Fusion Energy Sciences, using the DIII-D National Fusion Facility, a DOE Office

of Science user facility, under Awards DE-SC0019736, DE-SC0018990, DE-FG02-95ER54309,

and DE-FC02-04ER54698. This work has been carried out within the framework of the EURO-

fusion Consortium and has received funding from the Euratom research and training programme

2014-2018 and 2019-2020 under grant agreement No 633053. This work was supported by the

Engineering and Physical Sciences Research Council [EP/L01663X/1]. We acknowledge the

CINECA award under the ISCRA initiative, for the availability of high performance comput-

ing resources and support. Computing resources were provided by the Oak Ridge Leadership

Computing Facility under Contract DE-AC05-00OR22725 and the National Energy Research

Scientific Computing Center under Contract DE-AC02-05CH11231.
Disclaimer - The views and opinions expressed herein do not necessarily reflect those of the European Commission. This report was prepared as an account of work sponsored by an

agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any

legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately

owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its

endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect

those of the United States Government or any agency thereof.

References
[1] Mailloux J 2021 Nuclear Fusion Special issue 28th Fusion Energy Conference (Nice, France, 10-15 May

2021) to be published

[2] Candy J, Belli E and Bravenec R 2016 Journal of Computational Physics 324 73 – 93 ISSN 0021-9991

[3] Jenko F, Dorland W, Kotschenreuther M and Rogers B 2000 Phys. Plasmas 7 1904

[4] Staebler G, Candy J, Belli E, Kinsey J E, Bonanomi N and Patel B 2020 Plasma Phys. Control. Fusion 63

015013

[5] Staebler G 2021 Nucl. Fusion submitted

[6] Staebler G, Candy J, Howard N T and Holland C 2016 Phys. Plasmas 23 062518

[7] Kinsey J E, Staebler G M, Candy J, Petty C C, Rhodes T L and Waltz R E 2015 Phys. Plasmas 22 012507

47th EPS Conference on Plasma Physics P3.1069


