14 research outputs found

    Plasticity of spatial learning strategies in the common cuttlefish

    No full text

    HIGH RESOLUTION INFRARED SPECTRA OF THE 18O16O18O(C2ν^{18}O^{16}O^{18}O(C_{2}\nu) OZONE MOLECULE (1200 TO 500cm−1500 cm^{-1}. LINE POSITIONS

    No full text
    Author Institution: Groupe de Spectrom\'etrie Mol\'eculaire et Atmosph\'erique, UMR CNRS 6089 Universit\'e de Reims - Moulin de la Housse - BP 1039After the previous systematic analysis of 16O31,18O32,16O18O16O3,4^{16}O{_{3}}^{1}, {^{18}}O{_{3}}{^{2}},{^{16}}O^{18}O^{16}O{^{3,4}} in medium infrared, we present here the results of the analysis of new 18O16O18O^{18}O^{16}O^{18}O observed bands. The spectra have been recorded with the FTS of Reims5,6Reims^{5,6}, with a resolution of 0.006cm−10.006cm^{-1}, and products pathlength ×\times pressure up to 32m×332 m \times 3 Torr. The data reduction to derive line positions uses a new multifit program7program^{7}. The analysis of spectra is performed using the same formalism as in references [1-4], using standard Watson's Hamiltonian for diagonal blocks and Coriolis and Fermi resonances for off diagonal blocks. 8 polyads have been analysed, among them 7 being analysed for the first time. They correspond to 10 observed bands (underlined) in interaction with ``dark'' bands. (ν1,ν3);(ν2+ν3,ν1+ν2);(ν2+2ν3,ν1+ν2+ν3,2ν1+ν2);(3ν3,ν1+2ν3,2ν1+ν3);(ν2+3ν3);(ν1+3ν3,4ν3);(ν1+ν2+3ν3,ν2+4ν3)and(5ν3)\begin{array}{l}(\nu_{1}, \nu_{3}); (\nu_{2}+\nu_{3}, \nu_{1}+\nu_{2}); (\nu_{2}+2\nu_{3},\nu_{1}+\nu_{2}+\nu_{3}, 2\nu_{1}+\nu_{2}); (3\nu_{3}, \nu_{1}+2\nu_{3},2\nu_{1}+\nu_{3}); \\ (\nu_{2}+3\nu_{3}); (\nu_{1}+3\nu_{3}, 4\nu_{3}); (\nu_{1}+\nu_{2}+3\nu_{3},\nu_{2}+4\nu_{3}) and (5\nu_{3})\end{array} We give here the range of J and KaK_{a} for observed transitions, statistics for energy levels, spectroscopic parameters and resonance coupling parameters. Acknowledgments: Authors thank S.A Tashkun for use of GIP programs, X. Thomas and P. Von der Heyden for recording spectra, L. R\'{e}galia and J. J. Plateaux for the use of multifit program. 1. S. M. Mikhailenko, A. Barbe, VI. G. Tyuterev and A. Chichery, Atmos. Oceanic Opt., 12, 9 (1999) 2. A. Chichery, A. Barbe, VI. G. Tyuterev, J. Molecular Spectrosc., 206, 1 - 26 (2001) 3. A. Chichery, A. Brabe, VI. G. Tyuterev, S.A. Tashkun, J. Molecular Spectrosc., 205, 347-349 (2001) 4. M. R. De Backer Barilly, A. Barbe, VI. G. Tyuterev, A. Chichery, Mol. Phys., accepted (2002). 5. J.J. Plateaux, A. Barbe, and A. Delahaigue, Spectrochim. Acta, A 51, 1153-1196 (1995). 6. L. R\'{e}galia, Thesis Universit\'{e} de Reims, (France) (1996). 7. J.J. Plateaux, L. R\'{e}galia, C. Boussin and A. Barbe, J.Q.S.R.T., 68, 507-520 (2001)

    L'éthologie cognitive

    No full text
    Les singes s'épouillent, les araignées tissent, les lionnes chassent, les oiseaux chantent et les castors bâtissent. Les activités des animaux ont toujours beaucoup intéressé les biologistes et les psychologues. Mais l'étude des interactions de l'animal avec son milieu ne peut pas s'arrêter là : il faut aussi prendre en compte la perception que cet animal se fait des situations rencontrées ainsi que les émotions qu'il éprouve à leur sujet. Force est de constater que l'étude des comportements a souvent été privilégiée, au détriment d'aspects fonctionnels, qui sont, certes, plus difficiles à objectiver. L'étude de ces questions est essentielle pour mieux comprendre l'animal. Cet ouvrage, très fourni en exemples, très détaillé et très précis, nous offre la possibilité de faire le point sur le champ de l'éthologie cognitive, mais aussi et surtout sur son étendue et sur ses influences

    Cephalopods in neuroscience: regulations, research and the 3Rs

    Get PDF
    Cephalopods have been utilised in neurosci- ence research for more than 100 years particularly because of their phenotypic plasticity, complex and centralised nervous system, tractability for studies of learning and cellular mechanisms of memory (e.g. long-term potentia- tion) and anatomical features facilitating physiological studies (e.g. squid giant axon and synapse). On 1 January 2013, research using any of the about 700 extant species of ‘‘live cephalopods’’ became regulated within the European Union by Directive 2010/63/EU on the ‘‘Protection of Animals used for Scientific Purposes’’, giving cephalopods the same EU legal protection as previously afforded only to vertebrates. The Directive has a number of implications, particularly for neuroscience research. These include: (1) projects will need justification, authorisation from local competent authorities, and be subject to review including a harm-benefit assessment and adherence to the 3Rs princi- ples (Replacement, Refinement and Reduction). (2) To support project evaluation and compliance with the new EU law, guidelines specific to cephalopods will need to be developed, covering capture, transport, handling, housing, care, maintenance, health monitoring, humane anaesthesia, analgesia and euthanasia. (3) Objective criteria need to be developed to identify signs of pain, suffering, distress and lasting harm particularly in the context of their induction by an experimental procedure. Despite diversity of views existing on some of these topics, this paper reviews the above topics and describes the approaches being taken by the cephalopod research community (represented by the authorship) to produce ‘‘guidelines’’ and the potential contribution of neuroscience research to cephalopod welfare
    corecore