1,133 research outputs found

    Expected-value bias in routine third-trimester growth scans.

    Get PDF
    OBJECTIVES: Operators performing fetal growth scans are usually aware of the gestational age of the pregnancy, which may lead to expected-value bias when performing biometric measurements. We aimed to evaluate the incidence of expected-value bias in routine fetal growth scans and assess its impact on standard biometric measurements. METHODS: We collected prospectively full-length video recordings of routine ultrasound growth scans coupled with operator eye tracking. Expected value was defined as the gestational age at the time of the scan, based on the estimated due date that was established at the dating scan. Expected-value bias was defined as occurring when the operator looked at the measurement box on the screen during the process of caliper adjustment before saving a measurement. We studied the three standard biometric planes on which measurements of head circumference (HC), abdominal circumference (AC) and femur length (FL) are obtained. We evaluated the incidence of expected-value bias and quantified the impact of biased measurements. RESULTS: We analyzed 272 third-trimester growth scans, performed by 16 operators, during which a total of 1409 measurements (354 HC, 703 AC and 352 FL; including repeat measurements) were obtained. Expected-value bias occurred in 91.4% of the saved standard biometric plane measurements (85.0% for HC, 92.9% for AC and 94.9% for FL). The operators were more likely to adjust the measurements towards the expected value than away from it (47.7% vs 19.7% of measurements; P < 0.001). On average, measurements were corrected by 2.3 ± 5.6, 2.4 ± 10.4 and 3.2 ± 10.4 days of gestation towards the expected gestational age for the HC, AC, and FL measurements, respectively. Additionally, we noted a statistically significant reduction in measurement variance once the operator was biased (P = 0.026). Comparing the lowest and highest possible estimated fetal weight (using the smallest and largest biased HC, AC and FL measurements), we noted that the discordance, in percentage terms, was 10.1% ± 6.5%, and that in 17% (95% CI, 12-21%) of the scans, the fetus could be considered as small-for-gestational age or appropriate-for-gestational age if using the smallest or largest possible measurements, respectively. Similarly, in 13% (95% CI, 9-16%) of scans, the fetus could be considered as large-for-gestational age or appropriate-for-gestational age if using the largest or smallest possible measurements, respectively. CONCLUSIONS: During routine third-trimester growth scans, expected-value bias frequently occurs and significantly changes standard biometric measurements obtained. © 2019 the Authors. Ultrasound in Obstetrics & Gynecology published by John Wiley & Sons Ltd on behalf of the International Society of Ultrasound in Obstetrics and Gynecology

    Si3N4 emissivity and the unidentified infrared bands

    Get PDF
    Infrared spectroscopy of warm (about 150 to 750 K), dusty astronomical sources has revealed a structured emission spectrum which can be diagnostic of the composition, temperature, and in some cases, even size and shape of the grains giving rise to the observed emission. The identifications of silicate emission in oxygen rich objects and SiC in carbon rich object are two examples of this type of analysis. Cometary spectra at moderate resolution have similarly revealed silicate emission, tying together interstellar and interplanetary dust. However, Goebel has pointed out that some astronomical sources appear to contain a different type of dust which results in a qualitatively different spectral shape in the 8 to 13 micron region. The spectra shown make it appear unlikely that silicon nitride can be identified as the source of the 8 to 13 micron emission in either NGC 6572 or Nova Aql 1982. The similarity between the general wavelength and shape of the 10 micron emission from some silicates and that from the two forms of silicon nitride reported could allow a mix of cosmic grains which include some silicon nitride if only the 8 to 13 micron data are considered

    Acute coronary occlusion secondary to radiofrequency catheter ablation of a left lateral accessory pathway

    Get PDF
    A case of asymptomatic acute coronary occlusion secondary to radiofrequency catheter ablation of a left lateral accessory pathway is reported. Due to post-procedural ST modifications of the surface ECG, a coronary angiography was performed which disclosed total occlusion of the first marginal branch of the left circumflex coronary artery. A cute myocardial infarction was confirmed by moderate cardiac enzyme release, abnormal myocardial perfusion scan and mild lateral hypokinesia at echocardiographv. This rare but potentially harmful complication of interventional electrophysiology should be kept in mind and coronary angiography performed immediately when coronary occlusion related to radiofrequency application is suspecte

    Critical Behavior and Lack of Self Averaging in the Dynamics of the Random Potts Model in Two Dimensions

    Full text link
    We study the dynamics of the q-state random bond Potts ferromagnet on the square lattice at its critical point by Monte Carlo simulations with single spin-flip dynamics. We concentrate on q=3 and q=24 and find, in both cases, conventional, rather than activated, dynamics. We also look at the distribution of relaxation times among different samples, finding different results for the two q values. For q=3 the relative variance of the relaxation time tau at the critical point is finite. However, for q=24 this appears to diverge in the thermodynamic limit and it is ln(tau) which has a finite relative variance. We speculate that this difference occurs because the transition of the corresponding pure system is second order for q=3 but first order for q=24.Comment: 9 pages, 13 figures, final published versio

    Symmetry relation for multifractal spectra at random critical points

    Full text link
    Random critical points are generically characterized by multifractal properties. In the field of Anderson localization, Mirlin, Fyodorov, Mildenberger and Evers [Phys. Rev. Lett 97, 046803 (2006)] have proposed that the singularity spectrum f(α)f(\alpha) of eigenfunctions satisfies the exact symmetry f(2dα)=f(α)+dαf(2d-\alpha)=f(\alpha)+d-\alpha at any Anderson transition. In the present paper, we analyse the physical origin of this symmetry in relation with the Gallavotti-Cohen fluctuation relations of large deviation functions that are well-known in the field of non-equilibrium dynamics: the multifractal spectrum of the disordered model corresponds to the large deviation function of the rescaling exponent γ=(αd)\gamma=(\alpha-d) along a renormalization trajectory in the effective time t=lnLt=\ln L. We conclude that the symmetry discovered on the specific example of Anderson transitions should actually be satisfied at many other random critical points after an appropriate translation. For many-body random phase transitions, where the critical properties are usually analyzed in terms of the multifractal spectrum H(a)H(a) and of the moments exponents X(N) of two-point correlation function [A. Ludwig, Nucl. Phys. B330, 639 (1990)], the symmetry becomes H(2X(1)a)=H(a)+aX(1)H(2X(1) -a)= H(a) + a-X(1), or equivalently Δ(N)=Δ(1N)\Delta(N)=\Delta(1-N) for the anomalous parts Δ(N)X(N)NX(1)\Delta(N) \equiv X(N)-NX(1). We present numerical tests in favor of this symmetry for the 2D random QQ-state Potts model with various QQ.Comment: 15 pages, 3 figures, v2=final versio

    Large-q asymptotics of the random bond Potts model

    Full text link
    We numerically examine the large-q asymptotics of the q-state random bond Potts model. Special attention is paid to the parametrisation of the critical line, which is determined by combining the loop representation of the transfer matrix with Zamolodchikov's c-theorem. Asymptotically the central charge seems to behave like c(q) = 1/2 log_2(q) + O(1). Very accurate values of the bulk magnetic exponent x_1 are then extracted by performing Monte Carlo simulations directly at the critical point. As q -> infinity, these seem to tend to a non-trivial limit, x_1 -> 0.192 +- 0.002.Comment: 9 pages, no figure

    Fluctuation-dissipation ratios in the dynamics of self-assembly

    Full text link
    We consider two seemingly very different self-assembly processes: formation of viral capsids, and crystallization of sticky discs. At low temperatures, assembly is ineffective, since there are many metastable disordered states, which are a source of kinetic frustration. We use fluctuation-dissipation ratios to extract information about the degree of this frustration. We show that our analysis is a useful indicator of the long term fate of the system, based on the early stages of assembly.Comment: 8 pages, 6 figure

    Probability distributions of the work in the 2D-Ising model

    Full text link
    Probability distributions of the magnetic work are computed for the 2D Ising model by means of Monte Carlo simulations. The system is first prepared at equilibrium for three temperatures below, at and above the critical point. A magnetic field is then applied and grown linearly at different rates. Probability distributions of the work are stored and free energy differences computed using the Jarzynski equality. Consistency is checked and the dynamics of the system is analyzed. Free energies and dissipated works are reproduced with simple models. The critical exponent δ\delta is estimated in an usual manner.Comment: 12 pages, 6 figures. Comments are welcom

    Nonequilibrium critical dynamics of the two-dimensional Ising model quenched from a correlated initial state

    Full text link
    The universality class, even the order of the transition, of the two-dimensional Ising model depends on the range and the symmetry of the interactions (Onsager model, Baxter-Wu model, Turban model, etc.), but the critical temperature is generally the same due to self-duality. Here we consider a sudden change in the form of the interaction and study the nonequilibrium critical dynamical properties of the nearest-neighbor model. The relaxation of the magnetization and the decay of the autocorrelation function are found to display a power law behavior with characteristic exponents that depend on the universality class of the initial state.Comment: 6 pages, 5 figures, submitted to Phys. Rev.
    corecore