Abstract

Random critical points are generically characterized by multifractal properties. In the field of Anderson localization, Mirlin, Fyodorov, Mildenberger and Evers [Phys. Rev. Lett 97, 046803 (2006)] have proposed that the singularity spectrum f(α)f(\alpha) of eigenfunctions satisfies the exact symmetry f(2dα)=f(α)+dαf(2d-\alpha)=f(\alpha)+d-\alpha at any Anderson transition. In the present paper, we analyse the physical origin of this symmetry in relation with the Gallavotti-Cohen fluctuation relations of large deviation functions that are well-known in the field of non-equilibrium dynamics: the multifractal spectrum of the disordered model corresponds to the large deviation function of the rescaling exponent γ=(αd)\gamma=(\alpha-d) along a renormalization trajectory in the effective time t=lnLt=\ln L. We conclude that the symmetry discovered on the specific example of Anderson transitions should actually be satisfied at many other random critical points after an appropriate translation. For many-body random phase transitions, where the critical properties are usually analyzed in terms of the multifractal spectrum H(a)H(a) and of the moments exponents X(N) of two-point correlation function [A. Ludwig, Nucl. Phys. B330, 639 (1990)], the symmetry becomes H(2X(1)a)=H(a)+aX(1)H(2X(1) -a)= H(a) + a-X(1), or equivalently Δ(N)=Δ(1N)\Delta(N)=\Delta(1-N) for the anomalous parts Δ(N)X(N)NX(1)\Delta(N) \equiv X(N)-NX(1). We present numerical tests in favor of this symmetry for the 2D random QQ-state Potts model with various QQ.Comment: 15 pages, 3 figures, v2=final versio

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 03/01/2020
    Last time updated on 13/09/2023