59 research outputs found

    Cathodoluminescence Applied to the Microcharacterization of Mineral Materials: A Present Status in Experimentation and Interpretation

    Get PDF
    Experimentation and interpretation of cathodoluminescence (CL) microscopy and spectroscopy applied to the microcharacterization of material minerals are reviewed. The origins of the intrinsic (host lattice) and extrinsic (impurities) luminescence emissions in crystals are briefly discussed. Merits and limitations of the available techniques are illustrated. CL emission changes as a function of the incident electron dose are illustrated for the case of natural quartz and sphalerite (ZnS) crystals. These effects are discussed in terms of the development of bulk charging, production of heat, diffusion of impurities, and creation of lattice defects induced by the incident ionizing particles. Although CL emission is mostly extrinsic in origin there is no general rule for identifying the nature of impurities from the CL emission spectra of minerals. However there is potential for using CL spectroscopy for trace element analysis as presented for the case of minerals containing rare-earth luminescent ions. The CL emission is a signature of the crystal-chemistry properties of minerals and hence contains potential genetic information. Some of the applications of CL emissions in the geosciences are summarized

    UV femtosecond laser cleaning of encrusted historical stained-glasses

    Get PDF
    Laser irradiation enables the removal of unwanted surface deposits from different materials in a safe and controllable manner. Laser parameters should be carefully selected to achieve the removal of the target contaminants without inducing damage to the substrate. Ultra-short pulse lasers have opened new opportunities for safe and controlled decontamination of cultural heritage materials because the thickness of material that is affected by the laser is limited. In this study, an ultraviolet femtosecond pulsed laser was used for the removal of unwanted encrustation formed on the surface of an historical colourless stained-glass sample from the Cuenca Cathedral in Spain. One of the sides of this glass exhibits a reddish-brown grisaille that also has to be preserved. A laser cleaning process has been designed to avoid heat accumulation while controlling the thickness of ablated material. In this context, a multi-step process was selected in order to be able to eliminate, in a controlled way, the crust layer without damaging the grisaille layer, or the glass substrate. In this case, laser irradiation in beam scanning mode with a pulse repetition frequency of 10 kHz proved to be effective for the safe cleaning of the glass. The latter was analysed before and after laser cleaning by optical and confocal microscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray fluorescence, and Raman spectroscopy, confirming that the crust layer was effectively eliminated without damaging the surface

    Donald Pierson e o Projeto do Vale do Rio São Francisco: cientistas sociais em ação na era do desenvolvimento

    Full text link

    Cathodoluminescence and Laser-Induced Fluorescence of Calcium Carbonate: A Review of Screening Methods for Radiocarbon Dating of Ancient Lime Mortars

    No full text
    Accurate radiocarbon (14C) dating of lime mortars requires a thorough mineralogical characterization of binders in order to verify the presence of carbon-bearing contaminants. In the last 20 years, cathodoluminescence (CL) has been widely used for the identification of geologic calcium carbonate (CaCO3) aggregates and unreacted lime lumps within the particle size fraction selected for carbon recovery. These components are major sources of older and younger carbon, respectively, and should be removed to obtain accurate age determinations. More recently, laser-induced fluorescence (LIF) has provided another means of investigating the preservation state and composition of CaCO3 binders. Considered the growing interest of the mortar dating community in the latest advancements of these analytical methods, here we review the principles of CL and LIF of CaCO3, their instrument setup, and their application to the characterization of ancient lime mortars used for 14C dating. In addition, we provide examples of SEM-CL and LIF analyses using high-resolution instrumentation, we discuss current issues and propose future lines of research
    • 

    corecore