7,079 research outputs found

    Analysis of a 750 MHz SRF Dipole Cavity

    Get PDF
    There is a growing interest in using rf transverse deflecting structures for a plethora of applications in the current and future high performance colliders. In this paper, we present the results of a proof of principle superconducting rf dipole, designed as a prototype for a 750 MHz crabbing corrector for the Medium Energy Electron-Ion Collider (MEIC), which has been successfully tested at 4.2 K and 2 K at the Jefferson Lab’s Vertical Testing Area (VTA). The analysis of its rf performance during cryogenic testing, along with Helium pressure sensitivity, Lorentz detuning, surface resistance, and multipacting processing analysis are presented in this work. Detailed calculations of losses at the port flanges are included for completeness of the cavity’s cryogenic performance studies

    Cryogenic Test of a 750 MHz Superconducting RF Dipole Crabbing Cavity

    Get PDF
    A superconducting rf dipole cavity has been designed to address the challenges of a high repetition rate (750 MHz), high current for both electron/ion species (0.5/3 A per bunch), and large crossing angle (50 mrad) at the interaction points (IPs) crabbing system for the Medium Energy Electron-Ion Collider (MEIC) proposed by Jefferson Lab. The cavity prototype built at Niowave, Inc. has been tested at the Jefferson Lab facilities. In this work we present a detailed analysis of the prototype cavity performance at 4 K and 2 K, corroborating the absence of hard multipacting barriers that could limit the desired transverse fields, along with the surface resistance (Rs) temperature dependency

    Effect of force angle on the strain distribution of osseointegrated dental implants

    Get PDF
    International audienceIn this work, we investigate the response of the anisotropic maxilla bone in the peri-implant region, when osseointegrated implants are subjected to external forces at different angles, based on the stress and strain distribution by the finite element method. Models were created to represent a portion of a maxilla bone (upper first molar region) with two types of implants which have different thread geometry (squared and V-shaped) and material (Ti-6AL-4V ELI and grade IV Titanium). Compressive axial (150 N) and oblique load (150 N at 45° angle) were applied to anisotropic models of the bone tissues. Complete osseointegration was assumed. Results demonstrated that the increase of the implant inclination leads to a more critical behaviour. Oblique loading is more detrimental to stress and strain distribution than axial load. Stress fields were more efficiently distributed by squared thread implants

    Employing Twin Crabbing Cavities to Address Variable Transverse Coupling of Beams in the MEIC

    Get PDF
    The design strategy of the Medium Energy Electron-Ion Collider (MEIC) at Jefferson Lab contemplates both matching of the emittance aspect ratios and a 50 mrad crossing angle along with crab crossing scheme for both electron and ion beams over the energy range (√s=20-70 GeV) to achieve high luminosities at the interaction points (IPs). However, the desired locations for placing the crabbing cavities may include regions where the transverse degrees of freedom of the beams are coupled with variable coupling strength that depends on the collider rings’ magnetic elements (solenoids and skew quadrupoles). In this work we explore the feasibility of employing twin rf dipoles that produce a variable direction crabbing kick to account for a range of transverse coupling of both beams

    Modeling Crabbing Dynamics in an Electron-Ion Collider

    Get PDF
    A local crabbing scheme requires π/2 (mod π) horizontal betatron phase advances from an interaction point (IP) to the crab cavities on each side of it. However, realistic phase advances generated by sets of quadrupoles, or Final Focusing Blocks (FFB), between the crab cavities located in the expanded beam regions and the IP differ slightly from π/2. To understand the effect of crabbing on the beam dynamics in this case, a simple model of the optics of the Medium Energy Electron-Ion Collider (MEIC) including local crabbing was developed using linear matrices and then studied numerically over multiple turns (1000 passes) of both electron and proton bunches. The same model was applied to both local and global crabbing schemes to determine the linear-order dynamical effects of the synchro-betatron coupling induced by crabbing

    Particle dispersion processes in two-dimensional turbulence: a comparison with 2-D kinematic simulation.

    Get PDF
    International audienceWe study numerically the comparison between Lagrangian experiments on turbulent particle dispersion in 2-D turbulent flows performed, on the one hand, on the basis of direct numerical simulations (DNS) and, on the other hand, using kinematic simulations (KS). Eulerian space-time structure of both DNS and KS dynamics are not comparable, mostly due to the absence of strong coherent vortices and advection processes in the KS fields. The comparison allows to refine past studies about the contribution of non-homogeneous space-time 2-D Eulerian structure on the turbulent absolute and relative particle dispersion processes. We particularly focus our discussion on the Richardson's regime for relative dispersion

    De Novo Generation of Infectious Prions In Vitro Produces a New Disease Phenotype

    Get PDF
    Prions are the proteinaceous infectious agents responsible for Transmissible Spongiform Encephalopathies. Compelling evidence supports the hypothesis that prions are composed exclusively of a misfolded version of the prion protein (PrPSc) that replicates in the body in the absence of nucleic acids by inducing the misfolding of the cellular prion protein (PrPC). The most common form of human prion disease is sporadic, which appears to have its origin in a low frequency event of spontaneous misfolding to generate the first PrPSc particle that then propagates as in the infectious form of the disease. The main goal of this study was to mimic an early event in the etiology of sporadic disease by attempting de novo generation of infectious PrPSc in vitro. For this purpose we analyzed in detail the possibility of spontaneous generation of PrPSc by the protein misfolding cyclic amplification (PMCA) procedure. Under standard PMCA conditions, and taking precautions to avoid cross-contamination, de novo generation of PrPSc was never observed, supporting the use of the technology for diagnostic applications. However, we report that PMCA can be modified to generate PrPSc in the absence of pre-existing PrPSc in different animal species at a low and variable rate. De novo generated PrPSc was infectious when inoculated into wild type hamsters, producing a new disease phenotype with unique clinical, neuropathological and biochemical features. Our results represent additional evidence in support of the prion hypothesis and provide a simple model to study the mechanism of sporadic prion disease. The findings also suggest that prion diversity is not restricted to those currently known, and that likely new forms of infectious protein foldings may be produced, resulting in novel disease phenotypes
    corecore