10,885 research outputs found
Logarithmic-function generator
Solid-state logarithmic-function generator is compact and provides improved accuracy. Generator includes a stable multivibrator feeding into RC circuit. Resulting exponentially decaying voltage is compared with input signal. Generator output is proportional to time required for exponential voltage to decay from preset reference level to level of input signal
Phase control circuits using frequency multiplications for phased array antennas
A phase control coupling circuit for use with a phased array antenna is described. The coupling circuit includes a combining circuit which is coupled to a transmission line, a frequency multiplier circuit which is coupled to the combining circuit, and a recombining circuit which is coupled between the frequency multiplier circuit and phased array antenna elements. In a doubler embodiment, the frequency multiplier circuit comprises frequency doublers and the combining and recombining circuits comprise four-port hybrid power dividers. In a generalized embodiment, the multiplier circuit comprises frequency multiplier elements which multiply to the Nth power, the combining circuit comprises four-part hybrid power dividers, and the recombinding circuit comprises summing circuits
Phased-array antenna phase control circuit using frequency multiplication
Circuit separates out, from multiplied signals, antenna element signals which have desirable phase angles and feeds them to appropriate antenna elements of phased array. System may be used in either transmitting or receiving mode
Phase interpolation circuits using frequency multiplication for phased arrays
Antenna phasing circuit is described with the following advantages - 1/ increased number of phased elements, 2/ current repetition for each array element, 3/ circuit simplicity, and 4/ accurate phase interpolation. This circuit functions with Huggins Scan or with nearly any other phasing system
Alien Registration- Caron, Marie R. (Brunswick, Cumberland County)
https://digitalmaine.com/alien_docs/31428/thumbnail.jp
A way to estimate the heavy quark thermalization rate from the lattice
The thermalization rate of a heavy quark is related to its momentum diffusion
coefficient. Starting from a Kubo relation and using the framework of the heavy
quark effective theory, we argue that in the large-mass limit the momentum
diffusion coefficient can be defined through a certain Euclidean correlation
function, involving color-electric fields along a Polyakov loop. Furthermore,
carrying out a perturbative computation, we demonstrate that the spectral
function corresponding to this correlator is relatively flat at small
frequencies. Therefore, unlike in the case of several other transport
coefficients, for which the narrowness of the transport peak makes analytic
continuation from Euclidean lattice data susceptible to severe systematic
uncertainties, it appears that the determination of the heavy quark
thermalization rate could be relatively well under control.Comment: 17 pages. v2: clarifications and references added, published versio
- …