2,264 research outputs found
Dethinning Extensive Air Shower Simulations
We describe a method for restoring information lost during statistical
thinning in extensive air shower simulations. By converting weighted particles
from thinned simulations to swarms of particles with similar characteristics,
we obtain a result that is essentially identical to the thinned shower, and
which is very similar to non-thinned simulations of showers. We call this
method dethinning. Using non-thinned showers on a large scale is impossible
because of unrealistic CPU time requirements, but with thinned showers that
have been dethinned, it is possible to carry out large-scale simulation studies
of the detector response for ultra-high energy cosmic ray surface arrays. The
dethinning method is described in detail and comparisons are presented with
parent thinned showers and with non-thinned showers
Investigation of Mobility Limiting Mechanisms in Undoped Si/SiGe Heterostructures
We perform detailed magnetotransport studies on two-dimensional electron
gases (2DEGs) formed in undoped Si/SiGe heterostructures in order to identify
the electron mobility limiting mechanisms in this increasingly important
materials system. By analyzing data from 26 wafers with different
heterostructure growth profiles we observe a strong correlation between the
background oxygen concentration in the Si quantum well and the maximum
mobility. The highest quality wafer supports a 2DEG with a mobility of 160,000
cm^2/Vs at a density 2.17 x 10^11/cm^2 and exhibits a metal-to-insulator
transition at a critical density 0.46 x 10^11/cm^2. We extract a valley
splitting of approximately 150 microeV at a magnetic field of 1.8 T. These
results provide evidence that undoped Si/SiGe heterostructures are suitable for
the fabrication of few-electron quantum dots.Comment: Related papers at http://pettagroup.princeton.ed
A hydrogen energy carrier. Volume 1: Summary
The production, technology, transportation, and implementation of hydrogen into the energy system are discussed along with the fossil fuel cycle, hydrogen fuel cycle, and the demands for energy. The cost of hydrogen production by coal gasification; electrolysis by nuclear energy, and solar energy are presented. The legal aspects of a hydrogen economy are also discussed
A hydrogen energy carrier. Volume 2: Systems analysis
A systems analysis of hydrogen as an energy carrier in the United States indicated that it is feasible to use hydrogen in all energy use areas, except some types of transportation. These use areas are industrial, residential and commercial, and electric power generation. Saturation concept and conservation concept forecasts of future total energy demands were made. Projected costs of producing hydrogen from coal or from nuclear heat combined with thermochemical decomposition of water are in the range 1.50 per million Btu of hydrogen produced. Other methods are estimated to be more costly. The use of hydrogen as a fuel will require the development of large-scale transmission and storage systems. A pipeline system similar to the existing natural gas pipeline system appears practical, if design factors are included to avoid hydrogen environment embrittlement of pipeline metals. Conclusions from the examination of the safety, legal, environmental, economic, political and societal aspects of hydrogen fuel are that a hydrogen energy carrier system would be compatible with American values and the existing energy system
Recommended from our members
The F220C and F45L rhodopsin mutations identified in retinitis pigmentosa patients do not cause pathology in mice.
Retinitis pigmentosa is a retinal degenerative disease that leads to blindness through photoreceptor loss. Rhodopsin is the most frequently mutated protein in this disease. While many rhodopsin mutations have well-understood consequences that lead to cell death, the disease association of several rhodopsin mutations identified in retinitis pigmentosa patients, including F220C and F45L, has been disputed. In this study, we generated two knockin mouse lines bearing each of these mutations. We did not observe any photoreceptor degeneration in either heterozygous or homozygous animals of either line. F220C mice exhibited minor disruptions of photoreceptor outer segment dimensions without any mislocalization of outer segment proteins, whereas photoreceptors of F45L mice were normal. Suction electrode recordings from individual photoreceptors of both mutant lines showed normal flash sensitivity and photoresponse kinetics. Taken together, these data suggest that neither the F220C nor F45L mutation has pathological consequences in mice and, therefore, may not be causative of retinitis pigmentosa in humans
Arrival directions of cosmic rays of E .4 EeV
The anisotropy of cosmic rays observed by the Utah Fly's Eye detector has been studied. Emphasis has been placed on examining distributions of events in galactic coordinates. No statistically significant departure from isotropy has been observed for energies greater than 0.4 EeV (1 EeV = 10 to the 18th power eV). Results of the standard harmonic analysis in right ascension are also presented
Background light measurements at the DUMAND site
Ambient light intensities at the DUMAND site, west of the island of Hawaii were measured around the one photoelectron level. Throughout the water column between 1,500m and 4,700m, a substantial amount of stimulateable bioluminescence is observed with a ship suspended detector. But non-stimulated bioluminescence level is comparable, or less than, K sup 40 background, when measured with a bottom tethered detector typical of a DUMAND optical module
Reconnaissance of the HR 8799 Exosolar System II: Astrometry and Orbital Motion
We present an analysis of the orbital motion of the four sub-stellar objects
orbiting HR8799. Our study relies on the published astrometric history of this
system augmented with an epoch obtained with the Project 1640 coronagraph +
Integral Field Spectrograph (IFS) installed at the Palomar Hale telescope. We
first focus on the intricacies associated with astrometric estimation using the
combination of an Extreme Adaptive Optics system (PALM-3000), a coronagraph and
an IFS. We introduce two new algorithms. The first one retrieves the stellar
focal plane position when the star is occulted by a coronagraphic stop. The
second one yields precise astrometric and spectro-photometric estimates of
faint point sources even when they are initially buried in the speckle noise.
The second part of our paper is devoted to studying orbital motion in this
system. In order to complement the orbital architectures discussed in the
literature, we determine an ensemble of likely Keplerian orbits for HR8799bcde,
using a Bayesian analysis with maximally vague priors regarding the overall
configuration of the system. While the astrometric history is currently too
scarce to formally rule out coplanarity, HR8799d appears to be misaligned with
respect to the most likely planes of HR8799bce orbits. This misalignment is
sufficient to question the strictly coplanar assumption made by various authors
when identifying a Laplace resonance as a potential architecture. Finally, we
establish a high likelihood that HR8799de have dynamical masses below 13 M_Jup
using a loose dynamical survival argument based on geometric close encounters.
We illustrate how future dynamical analyses will further constrain dynamical
masses in the entire system.Comment: 26 pages, 18 figure
- …
