448 research outputs found

    CEDNIK: Phenotypic and molecular characterization of an additional patient and review of the literature

    Get PDF
    Synaptosomal-associated protein 29 (SNAP29) is a t-SNARE protein that is implicated in intracellular vesicle fusion. Mutations in the SNAP29 gene have been associated with cerebral dysgenesis, neuropathy, ichthyosis, and keratoderma syndrome (CEDNIK). In patients with 22q11.2 deletion syndrome, mutations in SNAP29 on the nondeleted chromosome are linked to similar ichthyotic and neurological phenotypes. Here, the authors report a patient with cerebral dysgenesis, neuropathy, ichthyosis, and keratoderma syndrome who presented with global developmental delay, polymicrogyria, dysgenesis of the corpus callosum, optic nerve dysplasia, gaze apraxia, and dysmorphic features. He has developed ichthyosis and palmoplantar keratoderma as he has grown. Exome sequencing identified a homozygous nonsense mutation in SNAP29 gene designated as c.85C>T (p.Arg29X). The authors compare the findings in the proband with previously reported cases. The previously unreported mutation in this patient and his phenotype add to the characterization of cerebral dysgenesis, neuropathy, ichthyosis, and keratoderma syndrome and the accumulating scientific evidence that implicates synaptic protein dysfunction in various neuroectodermal conditions

    Estimating the incidence, prevalence and true cost of asthma in the UK: secondary analysis of national stand-alone and linked databases in England, Northern Ireland, Scotland and Wales-a study protocol.

    Get PDF
    INTRODUCTION: Asthma is now one of the most common long-term conditions in the UK. It is therefore important to develop a comprehensive appreciation of the healthcare and societal costs in order to inform decisions on care provision and planning. We plan to build on our earlier estimates of national prevalence and costs from asthma by filling the data gaps previously identified in relation to healthcare and broadening the field of enquiry to include societal costs. This work will provide the first UK-wide estimates of the costs of asthma. In the context of asthma for the UK and its member countries (ie, England, Northern Ireland, Scotland and Wales), we seek to: (1) produce a detailed overview of estimates of incidence, prevalence and healthcare utilisation; (2) estimate health and societal costs; (3) identify any remaining information gaps and explore the feasibility of filling these and (4) provide insights into future research that has the potential to inform changes in policy leading to the provision of more cost-effective care. METHODS AND ANALYSIS: Secondary analyses of data from national health surveys, primary care, prescribing, emergency care, hospital, mortality and administrative data sources will be undertaken to estimate prevalence, healthcare utilisation and outcomes from asthma. Data linkages and economic modelling will be undertaken in an attempt to populate data gaps and estimate costs. Separate prevalence and cost estimates will be calculated for each of the UK-member countries and these will then be aggregated to generate UK-wide estimates. ETHICS AND DISSEMINATION: Approvals have been obtained from the NHS Scotland Information Services Division's Privacy Advisory Committee, the Secure Anonymised Information Linkage Collaboration Review System, the NHS South-East Scotland Research Ethics Service and The University of Edinburgh's Centre for Population Health Sciences Research Ethics Committee. We will produce a report for Asthma-UK, submit papers to peer-reviewed journals and construct an interactive map

    High-resolution x-ray telescopes

    Full text link
    High-energy astrophysics is a relatively young scientific field, made possible by space-borne telescopes. During the half-century history of x-ray astronomy, the sensitivity of focusing x-ray telescopes-through finer angular resolution and increased effective area-has improved by a factor of a 100 million. This technological advance has enabled numerous exciting discoveries and increasingly detailed study of the high-energy universe-including accreting (stellar-mass and super-massive) black holes, accreting and isolated neutron stars, pulsar-wind nebulae, shocked plasma in supernova remnants, and hot thermal plasma in clusters of galaxies. As the largest structures in the universe, galaxy clusters constitute a unique laboratory for measuring the gravitational effects of dark matter and of dark energy. Here, we review the history of high-resolution x-ray telescopes and highlight some of the scientific results enabled by these telescopes. Next, we describe the planned next-generation x-ray-astronomy facility-the International X-ray Observatory (IXO). We conclude with an overview of a concept for the next next-generation facility-Generation X. The scientific objectives of such a mission will require very large areas (about 10000 m2) of highly-nested lightweight grazing-incidence mirrors with exceptional (about 0.1-arcsecond) angular resolution. Achieving this angular resolution with lightweight mirrors will likely require on-orbit adjustment of alignment and figure.Comment: 19 pages, 11 figures, SPIE Conference 7803 "Adaptive X-ray Optics", part of SPIE Optics+Photonics 2010, San Diego CA, 2010 August 2-

    Development of white matter circuitry in infants with fragile x syndrome

    Get PDF
    IMPORTANCE Fragile X syndrome (FXS) is a genetic neurodevelopmental disorder and the most common inherited cause of intellectual disability in males. However, there are no published data on brain development in children with FXS during infancy. OBJECTIVE To characterize the development of white matter at ages 6, 12, and 24 months in infants with FXS compared with that of typically developing controls. DESIGN, SETTING, AND PARTICIPANTS Longitudinal behavioral and brain imaging datawere collected at 1 or more time points from 27 infants with FXS and 73 typically developing controls between August 1, 2008, and June 14, 2016, at 2 academic medical centers. Infants in the control group had no first- or second-degree relatives with intellectual or psychiatric disorders, including FXS and autism spectrum disorder. MAIN OUTCOMES AND MEASURES Nineteen major white matter pathwayswere defined in common atlas space based on anatomically informed methods. Diffusion parameters, including fractional anisotropy, were compared between groups using linear mixed effects modeling. Fiber pathways showing group differences were subsequently examined in association with direct measures of verbal and nonverbal development. RESULTS There were significant differences in the development of 12 of 19 fiber tracts between the 27 infants with FXS (22 boys and 5 girls) and the 73 infants in the control group (46 boys and 27 girls), with lower fractional anisotropy in bilateral subcortical-frontal, occipital-temporal, temporal-frontal, and cerebellar-thalamic pathways, as well as 4 of 6 subdivisions of the corpus callosum. For all 12 of these pathways, there were significant main effects between groups but not for the interaction of age × group, indicating that lower fractional anisotropy was present and stable from age 6 months in infants with FXS. Lower fractional anisotropy values in the uncinate fasciculi were correlated with lower nonverbal developmental quotient in the FXS group (left uncinate, F = 10.06; false discovery rate-corrected P = .03; right uncinate, F = 21.8; P = .004). CONCLUSIONS AND RELEVANCE The results substantiate in human infants the essential role of fragile X gene expression in the early development of white matter. The findings also suggest that the neurodevelopmental effects of FXS are well established at 6 months of age

    Development of cortical shape in the human brain from 6 to 24months of age via a novel measure of shape complexity

    Get PDF
    The quantification of local surface morphology in the human cortex is important for examining population differences as well as developmental changes in neurodegenerative or neurodevelopmental disorders. We propose a novel cortical shape measure, referred to as the ‘shape complexity index’ (SCI), that represents localized shape complexity as the difference between the observed distributions of local surface topology, as quantified by the shape index (SI) measure, to its best fitting simple topological model within a given neighborhood. We apply a relatively small, adaptive geodesic kernel to calculate the SCI. Due to the small size of the kernel, the proposed SCI measure captures fine differences of cortical shape. With this novel cortical feature, we aim to capture comparatively small local surface changes that capture a) the widening versus deepening of sulcal and gyral regions, as well as b) the emergence and development of secondary and tertiary sulci. Current cortical shape measures, such as the gyrification index (GI) or intrinsic curvature measures, investigate the cortical surface at a different scale and are less well suited to capture these particular cortical surface changes. In our experiments, the proposed SCI demonstrates higher complexity in the gyral/sulcal wall regions, lower complexity in wider gyral ridges and lowest complexity in wider sulcal fundus regions. In early postnatal brain development, our experiments show that SCI reveals a pattern of increased cortical shape complexity with age, as well as sexual dimorphisms in the insula, middle cingulate, parieto-occipital sulcal and Broca's regions. Overall, sex differences were greatest at 6 months of age and were reduced at 24 months, with the difference pattern switching from higher complexity in males at 6 months to higher complexity in females at 24months. This is the first study of longitudinal, cortical complexity maturation and sex differences, in the early postnatal period from 6 to 24 months of age with fine scale, cortical shape measures. These results provide information that complement previous studies of gyrification index in early brain development

    Pathway to the PiezoElectronic Transduction Logic Device

    Full text link
    The information age challenges computer technology to process an exponentially increasing computational load on a limited energy budget - a requirement that demands an exponential reduction in energy per operation. In digital logic circuits, the switching energy of present FET devices is intimately connected with the switching voltage, and can no longer be lowered sufficiently, limiting the ability of current technology to address the challenge. Quantum computing offers a leap forward in capability, but a clear advantage requires algorithms presently developed for only a small set of applications. Therefore, a new, general purpose, classical technology based on a different paradigm is needed to meet the ever increasing demand for data processing.Comment: in Nano Letters (2015

    A voxel-wise assessment of growth differences in infants developing autism spectrum disorder

    Get PDF
    Autism Spectrum Disorder (ASD) is a phenotypically and etiologically heterogeneous developmental disorder typically diagnosed around 4 years of age. The development of biomarkers to help in earlier, presymptomatic diagnosis could facilitate earlier identification and therefore earlier intervention and may lead to better outcomes, as well as providing information to help better understand the underlying mechanisms of ASD. In this study, magnetic resonance imaging (MRI) scans of infants at high familial risk, from the Infant Brain Imaging Study (IBIS), at 6, 12 and 24 months of age were included in a morphological analysis, fitting a mixed-effects model to Tensor Based Morphometry (TBM) results to obtain voxel-wise growth trajectories. Subjects were grouped by familial risk and clinical diagnosis at 2 years of age. Several regions, including the posterior cingulate gyrus, the cingulum, the fusiform gyrus, and the precentral gyrus, showed a significant effect for the interaction of group and age associated with ASD, either as an increased or a decreased growth rate of the cerebrum. In general, our results showed increased growth rate within white matter with decreased growth rate found mostly in grey matter. Overall, the regions showing increased growth rate were larger and more numerous than those with decreased growth rate. These results detail, at the voxel level, differences in brain growth trajectories in ASD during the first years of life, previously reported in terms of overall brain volume and surface area
    corecore