
Washington University School of Medicine
Digital Commons@Becker

Open Access Publications

2017

The emergence of network inefficiencies in infants
with autism spectrum disorder
John R. Pruett Jr.
Washington University School of Medicine in St. Louis

Kelly N. Botteron
Washington University School of Medicine in St. Louis

Robert C. McKinstry
Washington University School of Medicine in St. Louis

et al

Follow this and additional works at: https://digitalcommons.wustl.edu/open_access_pubs

This Open Access Publication is brought to you for free and open access by Digital Commons@Becker. It has been accepted for inclusion in Open
Access Publications by an authorized administrator of Digital Commons@Becker. For more information, please contact engeszer@wustl.edu.

Recommended Citation
Pruett, John R. Jr.; Botteron, Kelly N.; McKinstry, Robert C.; and et al, ,"The emergence of network inefficiencies in infants with
autism spectrum disorder." Biological Psychiatry.82,3. 176-185. (2017).
https://digitalcommons.wustl.edu/open_access_pubs/6759

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Digital Commons@Becker

https://core.ac.uk/display/212865219?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.wustl.edu?utm_source=digitalcommons.wustl.edu%2Fopen_access_pubs%2F6759&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wustl.edu/open_access_pubs?utm_source=digitalcommons.wustl.edu%2Fopen_access_pubs%2F6759&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wustl.edu/open_access_pubs?utm_source=digitalcommons.wustl.edu%2Fopen_access_pubs%2F6759&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:engeszer@wustl.edu


Archival Report

The Emergence of Network Inefficiencies in
Infants With Autism Spectrum Disorder
John D. Lewis, Alan C. Evans, John R. Pruett Jr., Kelly N. Botteron, Robert C. McKinstry,
Lonnie Zwaigenbaum, Annette M. Estes, D. Louis Collins, Penelope Kostopoulos, Guido Gerig,
Stephen R. Dager, Sarah Paterson, Robert T. Schultz, Martin A. Styner, Heather C. Hazlett, and
Joseph Piven, for the Infant Brain Imaging Study Network

ABSTRACT
BACKGROUND: Autism spectrum disorder (ASD) is a developmental disorder defined by behavioral features that
emerge during the first years of life. Research indicates that abnormalities in brain connectivity are associated with
these behavioral features. However, the inclusion of individuals past the age of onset of the defining behaviors
complicates interpretation of the observed abnormalities: they may be cascade effects of earlier neuropathology and
behavioral abnormalities. Our recent study of network efficiency in a cohort of 24-month-olds at high and low familial
risk for ASD reduced this confound; we reported reduced network efficiencies in toddlers classified with ASD. The
current study maps the emergence of these inefficiencies in the first year of life.
METHODS: This study uses data from 260 infants at 6 and 12 months of age, including 116 infants with longitudinal
data. As in our earlier study, we use diffusion data to obtain measures of the length and strength of connections
between brain regions to compute network efficiency. We assess group differences in efficiency within linear mixed-
effects models determined by the Akaike information criterion.
RESULTS: Inefficiencies in high-risk infants later classified with ASD were detected from 6 months onward in regions
involved in low-level sensory processing. In addition, within the high-risk infants, these inefficiencies predicted
24-month symptom severity.
CONCLUSIONS: These results suggest that infants with ASD, even before 6 months of age, have deficits in con-
nectivity related to low-level processing, which contribute to a developmental cascade affecting brain organization
and eventually higher-level cognitive processes and social behavior.
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Autism spectrum disorder (ASD) is a developmental disorder
defined by impairments in social communication and social
interaction and a restricted repertoire of activities and interests
(1). A great deal of research has focused on relating these
behavioral symptoms to brain-based measures to understand
how neurological abnormalities give rise to the symptoms of
ASD. Themajority of this research, however, has been based on
adults, adolescents, and older children, but the behavioral
manifestations of ASD first appear during the first or second year
of life (2–5). Differences in the brains of individuals with ASDwho
are far past this age may be the result of a complex cascade of
effects compounding some early neuropathology with the pro-
gressive impact of this neuropathology and its associated be-
haviors on brain development. These results therefore tell us
little about the emergence of the neuropathology that is asso-
ciated with the earliest behavioral signs of ASD. To elucidate
this, we study brain development during infancy.

In a recent study (6), we sought to determine what, if any,
differences in structural networks were present around the age

at which the characteristic symptoms of autism consolidate
(2–5). Motivated by recent research relating abnormalities in
brain connectivity in ASD to a number of the behavioral fea-
tures (7–25), we assessed white matter connectivity differ-
ences in 24-month-old siblings of older children diagnosed
with ASD, who are known to be at high familial risk for ASD, as
well as 24-month-olds at low familial risk for ASD (i.e., with no
first-degree relative with ASD or intellectual disability). We
assessed regional abnormalities in network efficiency in ASD
(i.e., the capacity to exchange information across a network)
and the relation between these regional differences and
symptom severity. Our results showed significantly decreased
efficiency in regions of the temporal, parietal, and occipital
lobes, and in Broca’s area in high-risk infants classified as
having ASD. This was among the earliest evidence of atypical
connectivity in ASD, reported at an age when diagnosis first
becomes feasible and stable (26–28).

The current study aims to map the emergence of these
network inefficiencies earlier in development, before symptom
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consolidation (28,29). We use magnetic resonance imaging
data together with clinical diagnosis and measures of symp-
tom severity (28). As in our earlier study, we obtain
tractography-based measures of the length and strength of
connections between anatomical brain regions and assess the
efficiency of information transfer for each brain region to all
other brain regions and within local subnetworks (30–33).
These measures simultaneously capture differences in the
strengths of the connections between brain regions and dif-
ferences in the spatial organization of the brain. We assess
differences in these measures of efficiency for every region of
the brain in infants with ASD versus non-ASD infants, as well
as the relation between efficiency and symptom severity. To
ascertain the developmental progression, we measure these
effects over time.

METHODS AND MATERIALS

Here we present an abbreviated version of the methods; a
detailed version can be found in the Supplement.

Participants

Participants were drawn from the Infant Brain Imaging Study,
an ongoing multisite longitudinal study funded by the National
Institutes of Health Autism Centers of Excellence program. The
Infant Brain Imaging Study documents brain and behavioral
development in infants at high familial risk for ASD by virtue of
having an older sibling with ASD, as well as in infants deemed
to be at low familial risk for ASD by virtue of having no first-
degree relative with ASD or intellectual disability and an older
sibling.

Neuroimaging and behavioral data were collected from high
and low familial risk infants at 6, 12, and 24 months of age. The
data acquired included T1- and T2-weighted images and
diffusion data. Usable data were acquired from 260 infants:

116 infants with longitudinal data, 33 infants for whom all im-
aging data were available at 6 months of age and structural but
not diffusion data were available at 12 months, and 111 infants
for whom all imaging data were available at 12 months of age
but not at 6 months. These data were stratified by risk status
and according to whether or not they received a diagnosis of
ASD at 24 months of age. Table 1 provides the sample char-
acteristics for high-risk infants diagnosed with ASD (HRPOS),
high-risk infants diagnosed as not having ASD (HRNEG), and
low-risk infants diagnosed as not having ASD (LRNEG). Note
that much of the data are from LRNEG and HRNEG infants,
limiting the power of the analysis of group differences. The
analysis of the relation between efficiency and symptom
severity does not suffer this limitation because it uses both the
HRPOS and HRNEG infants.

Behavioral Assessment

A clinical best-estimate diagnosis was made by two clinicians
based on all available information to determine whether a
participant met the DSM-IV-TR criteria for autistic disorder,
pervasive developmental disorder not otherwise specified, or
neither. ASD symptom severity was derived from the Autism
Diagnostic Observation Schedule (34) according to Gotham
et al. (35). The means and standard deviations of the symptom
severity scores for each group are reported in Table 1.

Imaging and Image Processing

Magnetic resonance imaging scans were performed while
infants were naturally sleeping. Data were collected at each
site on Siemens 3T TIM Trio scanners (Siemens Medical
Solutions, Malvern, PA) with 12-channel head coils. T1-, T2-,
and diffusion-weighted images were collected.

T1- and T2-weighted images were subjected to a visual
quality control during postprocessing. The diffusion-weighted

Table 1. Sample Characteristics of the Study Groups

HRPOS HRNEG LRNEG

n Age, Months (Mean 6 SD) n Age, Months (Mean 6 SD) n Age, Months (Mean 6 SD)

V06

Male 15 6.7 6 0.8 47 6.6 6 0.7 40 6.8 6 0.7

Female 2 6.7 6 0.4 33 6.7 6 0.8 12 6.5 6 0.5

V12

Male 27 12.8 6 0.8 77 12.6 6 0.5 37 12.7 6 0.6

Female 2 12.9 6 0.6 62 12.7 6 0.7 22 12.9 6 0.9

V06 1 V12

Male 13 d 39 d 27 d

Female 2 d 27 d 8 d

ADOS Severity (Mean 6 SD) ADOS Severity (Mean 6 SD) ADOS Severity (Mean 6 SD)

V06, V12, V06 1 V12

Male d 5.3 6 2.3 d 1.4 6 0.8 d 1.4 6 1.0

Female d 7.0 6 1.2 d 1.5 6 1.1 d 1.2 6 0.6

V06 rows provide the sample sizes and ages (in months) at the 6-month visit for individuals for whom there are only 6-month efficiency measures
and individuals for whom there are longitudinal measures. Likewise, the V12 rows provide the sample sizes and ages at the 12-month visit for
individuals for whom there are only 12-month efficiency measures and individuals for whom there are longitudinal measures. V06 1 V12 rows
provide the sample size for the longitudinal portion of the sample.

ADOS, Autism Diagnostic Observation Schedule; HRNEG, high-risk infants diagnosed as not having autism spectrum disorder; HRPOS, high-risk
infants diagnosed with autism spectrum disorder; LRNEG, low-risk infants diagnosed as not having autism spectrum disorder.
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images were cleaned of motion and other artifacts using DTI-
Prep (36), which corrects artifacts where possible, and
excludes directions from the data when correction is not
possible. Further visual quality control potentially eliminated
additional artifacts. If this process excluded >20% of the
directions for any size subset of the largest b-values, the
dataset was deemed unacceptable. Only datasets with
acceptable T1-, T2-, and diffusion-weighted images were
included in the analysis.

The T1 and T2 volumes were corrected for geometric
distortion (37) and then processed with CIVET, a fully auto-
mated structural image analysis pipeline developed at the
Montreal Neurological Institute. The contrast in the 6-month
data is insufficient for CIVET to extract accurate surfaces, so
6-month data were included in the analysis only if the
12-month T1 and T2 volumes were acceptable.

The CIVET results were used to construct the seed, stop,
and target masks for use with FSL’s probtrackx (38). Seed
masks were the entire white matter. Stop masks were the
voxels on the boundary of the white matter. Target masks
consisted of the cortical labels of the DKT40 surface parcel-
lation (39), as well as subcortical labels defined on a template
derived from pediatric data (40).

After artifact rejection and motion correction with DTIPrep
(36), the diffusion-weighted images were unwarped to the
distortion-corrected T2 volume. Two copies of these data were
then preprocessed for probabilistic tractography with FSL’s
bedpostx (38): one in native space, and one scaled to the
12-month template. Connection lengths were estimated using
the native space data; connection strengths were estimated
using the scaled data. The unwarped diffusion volumes were
affine registered to the T1 volumes in stereotaxic space.
Probabilistic tractography using FSL’s probtrackx was then
seeded from each voxel of the seed masks, with and without
distance bias correction (38,41), both in native and in 12-month
standard space. These results were then compiled for each
region of the cortical parcellation, generating undirected
matrices of the total number of connections between each pair
of regions from the results in standard space and the mean
physical length of those connections from the results in native
space. The total number of connections between each pair of
regions of the parcellation divided by the average surface area
of the two regions in stereotaxic space is referred to as
connection “strength.”

Analysis

We performed a longitudinal analysis of network efficiency
using the methods developed in our previously reported
analysis of the 24-month data (6). Based on Rubinov and
Sporns (42), we define the weighted distance between nodes i
and j as

dw
ij ¼

X
cuv˛Sij

duv

wuv

where Sij is the shortest path, in terms of tractography-based
measures of physical distances, between nodes i and j; duv
is the length of the edge between u and v along that path, and
wuv is the connection strength between nodes u and v. The

shortest paths, in terms of weighted distances, have “trans-
mission times” that decrease with the strengths of the con-
nections involved and increase with the tractography-based
measures of the physical distances involved. Our weighted
formulations of nodal global efficiency and nodal local effi-
ciency, also based on Rubinov and Sporns (42), are

Eweighted
nodal globalðG; iÞ ¼ 1

ðN� 1Þ
X

j˛G;isj

�
dw
ij

��1

where N is the number of nodes in the network graph G; and
dw
ij is the shortest path, in terms of weighted distance, between

nodes i and j; and

Eweighted
nodal localðG; iÞ ¼ 1

NGi

�
NGi � 1

� X
jsk˛Gi

��
dw
jk

��1
wijwik

�1=3

where NGi is the number of nodes in the subgraph Gi consisting
of all of the neighbors of i; dw

jk is the shortest path, in terms of
weighted distance, between nodes j and k; and wij and wik are
the connection strengths between nodes i and j and i and k,
respectively. According to Latora and Marchiori (30), these
measures are normalized by considering the fully connected
network.

Differences in nodal local efficiency and nodal global effi-
ciency between infants with ASD and non-ASD infants were
assessed via mixed-effects linear models. The group of non-
ASD infants was based on clinical best-estimate diagnosis,
ignoring familial risk (i.e., combines the LRNEG and HRNEG

infants). At each node, the best-fit model was determined by
the Akaike information criterion with the data centered at 9
months of age (43,44). In addition to subject-specific random
effects, the models could control for any of the following: age,
age2, sex, site, age � sex, age2 � sex, age � group, and
age2 � group. All possible models were evaluated, and group
differences were assessed within the model with the lowest
Akaike information criterion value. Group differences were
assessed across time to evaluate how the models differed by
group over development. Group differences were assessed
with the data centered at 6, 9, and 12 months of age.

Finally, to determine the extent to which network structure
might explain individual behavioral differencesdboth across
individuals with ASD and across the broader autism phenotype
(45–48)dwe assessed the relation between the measures of
network efficiency and the Autism Diagnostic Observation
Schedule–calibrated severity scores (35) across all high-risk
infants. This was also assessed at each node within the
model with the lowest Akaike information criterion value; in this
case, with models that could control for site and any of
severity, age, age2, and sex, and interactions of these terms
with each other and with severity.

In all analyses, we use a false discovery rate (FDR) correc-
tion for multiple comparisons (49).

RESULTS

Relative to the non-ASD infants, HRPOS infants showed
reductions in nodal local efficiency from 6 months of age
onward (Figure 1; Supplemental Table S1). The HRPOS infants
showed FDR-corrected significant reductions in nodal local
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efficiency over the right primary auditory cortex and the
superior and middle temporal gyri from 6 months of age
onwards. With the data centered at 9 months of age, the
HRPOS infants showed FDR-corrected significant reductions in
the left primary auditory cortex as well, and also in the left
insula with the data centered at 12 months of age. This
development of group differences was reflected in the models
for these regions; both included an age2 � group interaction
term. Note that all group differences at all time points were
reductions in nodal local efficiency in HRPOS infants.

Relative to the non-ASD infants, the HRPOS infants also
showed reductions in nodal global efficiency (Figure 2;
Supplemental Table S2). HRPOS infants showed an FDR-
corrected significant reduction in nodal global efficiency only
in Broca’s area at 12 months of age. The emergence of this
group difference was reflected in the age2 � group interaction
term in this region. As with nodal local efficiency, all group
differences at all time points were reductions in nodal global
efficiency in HRPOS infants.

Across the high-risk infants, the measures of network effi-
ciency and the symptom severity scores were inversely related
(i.e., symptom severity increased with decreasing efficiency).
There were FDR significant inverse relations of symptom
severity to nodal local efficiency from 6 months of age onward,
and no significant positive correlations at any time point
(Figure 3; Supplemental Table S3). At 6 months of age, the
inverse relations between severity and nodal local efficiency
reached FDR-corrected significance in the left primary auditory

cortex and the right superior temporal gyrus. By 9 months of
age, the inverse relation in the left primary visual cortex
reached FDR significance, as well as the left insula and
supramarginal and superior temporal gyri, and the middle
temporal gyri bilaterally. By 12 months of age, the inverse
relation in bilateral medial visual cortex reached FDR signifi-
cance, as well as the left somatosensory cortex and angular
gyrus, the right insula, and superior parietal lobule. Though the
left primary auditory cortex showed a significant relation
between nodal local efficiency and severity from 6 months
onward, the relationship strengthened with age, as reflected by
the t statistic; this developmental change in the relationship
was reflected in an age2 � severity interaction term in the
model for this region. The strengthening relationships between
nodal local efficiency and severity seen in the bilateral insula,
the right cuneus and superior parietal lobule, and the left
somatosensory cortex and angular gyrus were also reflected in
age2 � severity interaction terms in the models for those
regions.

The emerging relations between symptom severity and
nodal global efficiency were also exclusively inverse relations
(Figure 4; Supplemental Table S4). The inverse relations first
reached FDR significance at 9 months of age in the right
somatosensory cortex and angular gyrus and the supra-
marginal gyrus bilaterally. The emergence of these relation-
ships in each of these regions was reflected in an age � sex �
severity2 interaction term in the models, and for the right
angular gyrus, also an age � sex � severity interaction term.

Figure 1. The group differences in nodal local
efficiency for high-risk infants diagnosed with autism
spectrum disorder vs. high-risk infants diagnosed as
not having autism spectrum disorder and low-risk
infants diagnosed as not having autism spectrum
disorder assessed at 6, 9, and 12 months of age. The
t statistic is shown in the top half of the figure; the
p statistic is shown in the bottom half. Reduced ef-
ficiency in high-risk infants diagnosed with autism
spectrum disorder yields a negative t statistic (blue);
increased efficiency yields a positive t statistic (red).
The p statistic maps show both the p values that
survive a false discovery rate (FDR) correction for
multiple comparisons (purple), as well as those that
are significant uncorrected, but do not survive mul-
tiple comparison correction (blue). Each row shows
the results for the left hemisphere on the left and the
right hemisphere on the right. The medial views for
the left hemisphere are furthest to the left; the medial
views for the right hemisphere are furthest to the
right. Age is indicated in the center of each row. Note
that false discovery rate–significant reductions in
nodal local efficiency in high-risk infants diagnosed
with autism spectrum disorder are seen at 6 months
of age in the right primary auditory cortex and
superior and middle temporal gyri; reductions in the
left primary auditory cortex become significant by 9
months of age, followed by reductions in the left
insula by 12 months of age.
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By 12 months of age, there were FDR significant inverse
relations in bilateral somatosensory cortex, the left motor
cortex, and supplementary motor cortex, as well as Broca’s
area and its right hemisphere homologue, the bilateral supra-
marginal and angular gyri, and the right precuneus, medial
orbitofrontal cortex, and middle frontal gyrus. The emergence
of the additional relations seen at 12 months of age in Broca’s
area and its right hemisphere homologue, as well as the left
motor cortex and right precuneus and medial orbitofrontal
cortex, are again reflected in an age � sex � severity2 inter-
action term in the models for these regions.

Notably, both for the analyses of the group differences in
efficiency and for the relation of efficiency to symptom severity,
the best-fit model for the majority of nodes included age as a
covariate, and in all cases, age was significantly positively
related to efficiency.

DISCUSSION

Our previous analysis of network efficiency in 24-month-olds
showed reductions in efficiency in ASD and an inverse relation
between efficiency and symptom severity within the high-risk
group. Our goal in the current analysis was to map the emer-
gence of these network inefficiencies during the first year of life
in infants who go on to develop ASD, in order to identify more
precisely where and when these inefficiencies first appear. Our
results show inefficiencies already present at 6 months of age in
regions associated with auditory processing, and by 12 months

of age in additional regions known to be involved in low-level
processing and integration, as well as Broca’s area, a region
involved in more abstract aspects of language processing. In
addition, across high-risk infants, lower network efficiency at 6
months of age in regions encompassing primary and secondary
auditory areas was associated with greater 24-month symptom
severity; and over the next 6 months, visual, somatosensory,
and motor areas, as well as areas involved in sensory integra-
tion and higher-level processing (e.g., Broca’s and Wernicke’s
areas), also became associated with 24-month symptom
severity. Children and adults with ASD, and in the broader
autism phenotype, commonly have abnormalities in motor
behaviors, responses to tactile, auditory, and visual stimuli, and
in their processing of language and nonlinguistic social stimuli
(e.g., faces) as well as in higher-level cognitive processes [e.g.,
executive function (45–48,50–60)]. Both this pattern of emer-
gence of reductions in efficiency in infants who go on to
develop ASD and the pattern of emergence of inverse relations
between efficiency and 24-month symptom severity are
consistent with the conjecture that some of the most devel-
opmentally proximal deficits in ASD, and in the broader autism
phenotype, are in low-level sensory processing (61) rather than
higher-level cognitive processes (14,62,63), and that abnor-
malities in higher-level processes (e.g., language) stem from
these low-level inefficiencies. It should be noted, however, that
inclusion of the cerebellum and subcortical regions in the
analysis may alter the results, particularly given their impor-
tance in sensory and motor processing (64–66).

Figure 2. The group differences in nodal global
efficiency for high-risk infants diagnosed with autism
spectrum disorder vs. high-risk infants diagnosed as
not having autism spectrum disorder and low-risk
infants diagnosed as not having autism spectrum
disorder assessed at 6, 9, and 12 months of age. The
t statistic is shown in the top half of the figure; the
p statistic is shown in the bottom half. Reduced ef-
ficiency in high-risk infants diagnosed with autism
spectrum disorder yields a negative t statistic (blue);
increased efficiency yields a positive t statistic (red).
The p statistic maps show both the p values that
survive a false discovery rate (FDR) correction for
multiple comparisons (purple), as well as those that
are significant uncorrected, but do not survive mul-
tiple comparison correction (blue). Each row shows
the results for the left hemisphere on the left and the
right hemisphere on the right. The medial views for
the left hemisphere are furthest to the left; the medial
views for the right hemisphere are furthest to the
right. Age is indicated in the center of each row. Note
that false discovery rate–significant reductions in
nodal global efficiency in high-risk infants diagnosed
with autism spectrum disorder are seen in Broca’s
area at 12 months of age.
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We have suggested that findings reported for cohorts that
included older children, adolescents, or adults would, at least
in part, reflect cascade effects of earlier abnormalities in neural
circuitry and behavioral abnormalities, rather than representing
the primary neural underpinnings of the disorder. Our previous
analysis of network efficiency in 24-month-olds reduced the
possibility that the observed abnormalities were contaminated
by cascade effects from earlier neuropathology or behavioral
abnormalities, but did not eliminate that possibility (6). The
current analysis further reduces that possible confound. The
fact that significant reductions in efficiency are seen in infants
with ASD by 6 months of age indicates that neural abnormal-
ities are present before the onset of the defining behavioral
features of autism. To date, infant studies have not been able
to identify behavioral markers of the defining features of ASD
before 12 months of age (67–70). In addition, within the Infant
Brain Imaging Study sample, the HR infants with ASD show no
abnormalities in the social communication or repetitive be-
haviors domains at 6 months of age (28); however, those with
high 24-month severity scores do show abnormalities in
sensorimotor behaviors (28). This appears to be reflected in the
pattern of reductions in efficiency at 6 months of age. Though
there are reductions in efficiency already at 6 months of age in
HR infants with ASD, those reductions are only associated with
primary auditory cortex and the superior and middle temporal
gyri; likewise, efficiency at 6 months of age is associated with
24-month symptom severity only for the primary auditory
cortex and the superior temporal gyrus. These results suggest

that reductions in efficiency in frontal regions (71) typically
associated with higher-level cognitive processes (e.g., execu-
tive function) may be cascade effects from these earlier deficits
in regions supporting lower-level processing of sensory inputs
(61). Such cascade effects might underlie findings of para-
metric relationships between social communicative symptoms
of autism and brain responses in nonsocial perceptual decision
tasks (72). Inefficiencies in regions associated with higher-level
cognitive functions might, of course, arise independently,
potentially because of the same neuropathology effecting re-
gions involved in low-level sensory processing (61); but neural
abnormalities that yield basic level deficits early in develop-
ment are likely to have cascade effects over developmental
time through interactions within the brain, altered interactions
with the environment, and altered gene expression (73).

It is important to note, however, that regional differences in
efficiency indicate differences not in the nodes themselves but
in the networks associated with those nodes. Therefore,
reduced efficiency in early sensory processing regions does
not mean that those regions, in isolation, are deficient; but
rather that the structure of the network is less optimal for those
regions. In addition, nodal local and nodal global efficiency are
not simply indices of connectivity, implying abnormalities in
short- and long-range connectivity, respectively. The re-
ductions in both nodal local and nodal global efficiency in
HRPOS infants more likely reflect a more random configuration
than seen in the non-ASD infants, having less of the modular
structure seen in the typical mature brain. Reductions in nodal

Figure 3. The relation of autism severity scores to
nodal local efficiency in the high-risk infants,
assessed within linear mixed effects models at 6, 9,
and 12 months of age. The t statistic is shown in the
top half of the figure; the p statistic is shown in the
bottom half. A positive correlation between effi-
ciency and severity yields a positive t statistic (red);
an inverse relation between efficiency and severity
yields a negative t statistic (blue). The p statistic
maps show both the p values that survive a false
discovery rate (FDR) correction for multiple com-
parisons (purple), as well as those that are significant
uncorrected but do not survive multiple comparison
correction (blue). Each row shows the results for the
left hemisphere on the left and the right hemisphere
on the right. The medial views for the left hemisphere
are furthest to the left; the medial views for the right
hemisphere are furthest to the right. Age is indicated
in the center of each row. Note that there are false
discovery rate–significant inverse relations between
autism severity and nodal local efficiency at 6
months of age in primary auditory cortex, and that by
12 months of age there are also inverse relations in
visual and somatosensory regions, as well as the
insula.
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local efficiency suggest that corticocortical organization
is deficientwith respect to the spatial clustering required for rapid
processing, whereas reductions in nodal global efficiency sug-
gest that corticocortical organization is deficient with respect to
the long-range connectivity that provides for integration of in-
formation between different brain regions. The results here
indicate that the first deficits in corticocortical organization in
infantswith ASD are in terms of forming spatially local clusters of
regions with strong interconnectivitydspecifically clusters
including regions involved in auditory processing. We speculate
that these deficits in spatial clustering may then lead to
reductions in integrationwithmore spatially distant regions (e.g.,
between temporal or occipital lobe areas involved in low-level
processing and frontal lobe areas involved in higher-level
processing).

This is not to suggest, however, that there is a single etiology
of these initial local deficits. The multitude of genetic mutations
associated with autism (74), as well as the behavioral hetero-
geneity of the disorder, argue otherwise. Nor is it to suggest
that the underlying processes are themselves necessarily
spatially local; in fact, that reduced nodal local efficiency at 12
months is associated with increased symptom severity at 24
months in regions associated with auditory, visual, and so-
matosensory processing suggests a general deficit. Multiple
mechanisms might alter development timing to yield such an
outcome. Children with ASD show reduced developmental
synaptic pruning (75,76). Such a decrease in synaptic pruning
will hamper the axonal remodeling that refines the massively

exuberant connectivity produced prenatally, resulting in ineffi-
cient overconnectivity. Alterations in neurotrophic factors might
also yield such an outcome (77). Abnormalities in attention or
social reward might also impact neural processing, and in turn,
structure (78). The fact that these associations appear first in
regions involved in low-level processing may reflect only that
development proceeds from primary to secondary to tertiary
areas (79,80), or that there is less variability in the way these
regions are connected with other regions. Once such deficits in
low-level processing exist, however, they will propel an altered
developmental cascade, with consequences to downstream
neural development. Therefore, without early longitudinal data,
it will be difficult to determine whether later seen abnormalities
are consequences of such a developmental cascade or instead
arise independently.

Perhaps even more important than where in the brain
these deficits first arise is when they arise. These results
indicate that the neuropathology of ASD must originate
before 6 months of age. By 6 months of age, HR infants
who go on to develop ASD already show deficiencies in
corticocortical organization. This is important for several
reasons. First, it suggests that neural biomarkers of ASD
could be present before 6 months of age, which might allow
for identification presymptomatically. Abnormalities within a
developing system give rise to further abnormalities; there-
fore, intervention later in development is operating on a
vastly altered neural landscape, and likely therefore meets
with limited success (81–84). Intervention should likely begin

Figure 4. The relation of autism severity scores to
nodal global efficiency in the high-risk infants,
assessed within linear mixed-effects models at 6, 9,
and 12 months of age. The t statistic is shown in the
top half of the figure; the p statistic is shown in the
bottom half. A positive correlation between effi-
ciency and severity yields a positive t statistic (red);
an inverse relation between efficiency and severity
yields a negative t statistic (blue). The p statistic
maps show both the p values that survive a false
discovery rate (FDR) correction for multiple com-
parisons (purple), as well as those that are significant
uncorrected but do not survive multiple comparison
correction (blue). Each row shows the results for the
left hemisphere on the left and the right hemisphere
on the right. The medial views for the left hemisphere
are furthest to the left; the medial views for the right
hemisphere are furthest to the right. Age is indicated
in the center of each row. Note that there are false
discovery rate–significant inverse relations between
autism severity and nodal global efficiency by
9 months of age in areas involved in somatosensory
processing and language processing, and that by
12 months of age there are inverse relations in a
more extensive set of language areas, including
Broca’s area and its right hemisphere homologue, as
well as areas involved in motor processing and more
abstract aspects of cognition.
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as soon as the first signs of abnormality appear and should
be theoretically directed to stem the cascade of abnormal-
ities. Preliminary evidence from animal research suggests
that intensive auditory behavioral training may be able to
limit or eliminate the abnormalities seen here in auditory
cortex (85). Second, such early biomarkers, with little
contamination from cascade effects, would provide a way to
characterize heterogeneity in the neuropathology associated
with ASD, and an improved possibility of linking neuropa-
thology to genetic alterations. Third, the presence of ab-
normalities at 6 months of age narrows the set of possible
environmental triggers, improving our chances of identifying
such triggers.

However, it bears repeating that the group differences re-
ported here are based on 31 HRPOS infants, of which only two
are female, and 15 provide longitudinal data. The results for the
analysis of the relation between efficiency and symptom
severity provide supporting evidence, and are based on a
larger number of infants (i.e., 184 infants, of which 70 are
female, and 81 provide longitudinal data). Nonetheless, larger
amounts of longitudinal data from even younger infants will be
required to determine more precisely, and with greater cer-
tainty, when and where the reductions in efficiency first appear
in infants who go on to develop ASD.
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