7,156 research outputs found

    Bell's Theorem from Moore's Theorem

    Full text link
    It is shown that the restrictions of what can be inferred from classically-recorded observational outcomes that are imposed by the no-cloning theorem, the Kochen-Specker theorem and Bell's theorem also follow from restrictions on inferences from observations formulated within classical automata theory. Similarities between the assumptions underlying classical automata theory and those underlying universally-unitary quantum theory are discussed.Comment: 12 pages; to appear in Int. J. General System

    On Carbon Burning in Super Asymptotic Giant Branch Stars

    Get PDF
    We explore the detailed and broad properties of carbon burning in Super Asymptotic Giant Branch (SAGB) stars with 2755 MESA stellar evolution models. The location of first carbon ignition, quenching location of the carbon burning flames and flashes, angular frequency of the carbon core, and carbon core mass are studied as a function of the ZAMS mass, initial rotation rate, and mixing parameters such as convective overshoot, semiconvection, thermohaline and angular momentum transport. In general terms, we find these properties of carbon burning in SAGB models are not a strong function of the initial rotation profile, but are a sensitive function of the overshoot parameter. We quasi-analytically derive an approximate ignition density, ρign2.1×106\rho_{ign} \approx 2.1 \times 10^6 g cm3^{-3}, to predict the location of first carbon ignition in models that ignite carbon off-center. We also find that overshoot moves the ZAMS mass boundaries where off-center carbon ignition occurs at a nearly uniform rate of ΔMZAMS\Delta M_{\rm ZAMS}/Δfov\Delta f_{\rm{ov}}\approx 1.6 MM_{\odot}. For zero overshoot, fovf_{\rm{ov}}=0.0, our models in the ZAMS mass range \approx 8.9 to 11 MM_{\odot} show off-center carbon ignition. For canonical amounts of overshooting, fovf_{\rm{ov}}=0.016, the off-center carbon ignition range shifts to \approx 7.2 to 8.8 MM_{\odot}. Only systems with fovf_{\rm{ov}} 0.01\geq 0.01 and ZAMS mass \approx 7.2-8.0 MM_{\odot} show carbon burning is quenched a significant distance from the center. These results suggest a careful assessment of overshoot modeling approximations on claims that carbon burning quenches an appreciable distance from the center of the carbon core.Comment: Accepted ApJ; 23 pages, 21 figures, 5 table

    Properties of Carbon-Oxygen White Dwarfs From Monte Carlo Stellar Models

    Get PDF
    We investigate properties of carbon-oxygen white dwarfs with respect to the composite uncertainties in the reaction rates using the stellar evolution toolkit, Modules for Experiments in Stellar Astrophysics (MESA) and the probability density functions in the reaction rate library STARLIB. These are the first Monte Carlo stellar evolution studies that use complete stellar models. Focusing on 3 M_{\odot} models evolved from the pre main-sequence to the first thermal pulse, we survey the remnant core mass, composition, and structure properties as a function of 26 STARLIB reaction rates covering hydrogen and helium burning using a Principal Component Analysis and Spearman Rank-Order Correlation. Relative to the arithmetic mean value, we find the width of the 95\% confidence interval to be ΔM1TP\Delta M_{{\rm 1TP}} \approx 0.019 M_{\odot} for the core mass at the first thermal pulse, Δ\Deltat1TPt_{\rm{1TP}} \approx 12.50 Myr for the age, Δlog(Tc/K)\Delta \log(T_{{\rm c}}/{\rm K}) \approx 0.013 for the central temperature, Δlog(ρc/g cm3)\Delta \log(\rho_{{\rm c}}/{\rm g \ cm}^{-3}) \approx 0.060 for the central density, ΔYe,c\Delta Y_{\rm{e,c}} \approx 2.6×\times105^{-5} for the central electron fraction, ΔXc(22Ne)\Delta X_{\rm c}(^{22}\rm{Ne}) \approx 5.8×\times104^{-4}, ΔXc(12C)\Delta X_{\rm c}(^{12}\rm{C}) \approx 0.392, and ΔXc(16O)\Delta X_{\rm c}(^{16}\rm{O}) \approx 0.392. Uncertainties in the experimental 12^{12}C(α,γ)16O\alpha,\gamma)^{16}\rm{O}, triple-α\alpha, and 14^{14}N(p,γ)15Op,\gamma)^{15}\rm{O} reaction rates dominate these variations. We also consider a grid of 1 to 6 M_{\odot} models evolved from the pre main-sequence to the final white dwarf to probe the sensitivity of the initial-final mass relation to experimental uncertainties in the hydrogen and helium reaction rates.Comment: Accepted for publication in The Astrophysical Journal; 19 Pages, 23 Figures, 5 Table

    XMM-Newton observations of SDSS J143030.22-001115.1: an unusually flat spectrum AGN

    Get PDF
    We present XMM observations of the AGN SDSS 1430-0011. The low S/N spectrum of this source obtained in a snap shot Chandra observation showed an unusually flat continuum. With the follow up XMM observations we find that the source spectrum is complex; it either has an ionized absorber or a partially covering absorber. The underlying power-law is in the normal range observed for AGNs. The low luminosity of the source during Chandra observations can be understood in terms of variations in the absorber properties. The X-ray and optical properties of this source are such that it cannot be securely classified as either a narrow line Seyfert 1 or a broad line Seyfert 1 galaxy.Comment: Submitted to A

    Instrument manual for the retarding ion mass spectrometer on Dynamics Explorer-1

    Get PDF
    The retarding ion mass spectrometer (RIMS) for Dynamics Explorer-1 is an instrument designed to measure the details of the thermal plasma distribution. It combines the ion temperature determining capability of the retarding potential analyzer with the compositional capabilities of the mass spectrometer and adds multiple sensor heads to sample all directions relative to the spacecraft ram direction. This manual provides a functional description of the RIMS, the instrument calibration, and a description of the commands which can be stored in the instrument logic to control its operation

    Archeological Investigation at Yanaguana Garden in Hemisfair Park, San Antonio, Bexar County, Texas

    Get PDF
    This report describes archeological efforts done under six work orders for the development of Yanaguana Garden at HemisFair Park in downtown San Antonio, Texas. All of the projects were done by Prewitt and Associates, Inc. (PAI), for Adams Environmental, Inc. (AEI), and the City of San Antonio, Transportation and Capital Improvements (CoSA-TCI), under Texas Antiquities Permit No. 6846 (issued April 14, 2014). As described below, the Yanaguana Garden project is the first phase of a planned redevelopment of HemisFair Park for mixed-use purposes. Planning for how to deal with cultural resources during this redevelopment began in 2012 when PAI prepared two reports summarizing known archeological and historical resources and providing recommendations for future work (Dase 2013; Fields and McWilliams 2012). Almost all of the subsequent work reported here dealt strictly with the permitted archeological investigations, with limited effort going toward historical resources under a single work order

    The retarding ion mass spectrometer on dynamics Explorer-A

    Get PDF
    An instrument designed to measure the details of the thermal plasma distribution combines the ion temperature-determining capability of the retarding potential analyzer with the compositional capabilities of the mass spectrometer and adds multiple sensor heads to sample all directions relative to the spacecraft ram directions. The retarding ion mass spectrometer, its operational modes and calibration are described as well as the data reduction plan, and the anticipated results

    Plasma Physics

    Get PDF
    Contains reports on four research projects.United States Atomic Energy Commission (Contract AT(30-1)-1842)United States Air Force, Air Force Cambridge Research Center (Contract AF19(604)-5992
    corecore