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A. INTERACTION BETWEEN THE RADIATION FIELD AND THE

STATISTICAL STATE OF A PLASMA

The fact that the electromagnetic radiation generated by a plasma can alter the sta-

tistical distribution of the radiating particles is generally not taken into consideration.

The effects are expected to be large when, for example, the plasma departs from ther-

modynamic equilibrium and becomes unstable. The intense radiation that the plasma

can now generatel reacts on the energy distribution of the particles. And it is not incon-

ceivable that by driving the distribution closer to a Maxwellian, the instability will in

time be quenched.

The problem of coupling between the radiation field and the statistical state of the

plasma has been discussed recently by Kudryavtsev, 2 Akhiezer et al., and Dreicer. 4

A self-consistent calculation requires a simultaneous solution of two nonlinear equations

and thus far has not been carried out. In this report we make no attempt to solve the

problem - we shall merely set up the appropriate equations and present them in a form

different from the one given by the above-mentioned authors. Since much of the intense

radiation occurs at radio and microwave frequencies and the emission is primarily

caused by the free electrons, we shall restrict our considerations to this situation.

We have two equations that describe a system composed of a plasma and its radiation

field. The one is the equation of transfer for the flow of radiant energy. If I is the

intensity of radiation in the radian frequency interval between o and o + dw along a ray

s, then

8I I8
1 + -a I (1)
c 8t as = w

where j and a are the emission and absorption coefficients of the plasma, respectively.

The foregoing equation can be rewritten1 in terms of the rate of spontaneous emission of
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radiation, 9,, and the distribution of electron velocities, f(v):

+ = 1 f(v) 4wy2 dv + v8) v 2 1 . (2)
c 8t as  v2 au

Here u = mvy /2 is the electron energy, and f(v) has been assumed to be isotropic (in

principle there is no difficulty in extending Eq. 2 to anisotropic distributions).

The second equation is Boltzmann's equation that prescribes the distribution of elec-

tron velocities and concentrations in the presence of fields and particle interactions:

af +v - V f- e [E+vXB] V f = C + C (3)
8t ~ r m v collision radiation(

E and B are the externally applied fields. Since, however, I can be considered as the

electromagnetic radiation composed of externally applied fields, as well as the internally

generated radiation, E, H represent only that portion of the external forces not included

in I

The term Cradiation (hereafter Crad) is a way of writing symbolically the difference

between the rates at which electrons are scattered into and out of a volume element of

velocity space as a result of their emission and absorption of radiation; it is this term

that is generally neglected in computations of f and which, as we shall see, makes Eq. 3

a function of I
W3

We shall now calculate Crad The quantity Cradd3v equals the rate at which elec-

trons enter the volume element d v minus the rate at which they leave d 3 v, as a result

of spontaneous emission, absorption, and stimulated emission. We shall consider, first,

the rates at which they enter and leave d 3 v as a result of radiative transitions to and

from two neighboring elements d3(v') and d3(v"), where v' < v and v" > v. The speeds

v, v', and v" are such that transitions v v', v ,-v" are associated with the emission

or absorption of a photon h i whose frequency is given by

w = (1/2) my 2 - (1/2) mv' 2

(4)

= (1/2) mv" 2 - (1/2) my 2 .

Writing q wA as the rate of absorption and TWS as the rate of stimulated emission, we

obtain

Crad(v,v',v") d 3 v = (v') f(v') d3 v -A( v ) f(v) d3v dw do

+ TWS(V") f(v") d3 (v) f(v) d3v d do

+ (v ) f (v ") d 3 v" - (v) f(v) d3v] d d (5)
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where ilwA' 1wS' and r are related as in Einstein's A and B coefficients:

l(v) 3  (v')
8rr c (6)

VT A(V) = V'rlwS(V')

We simplify Eq. 5 by proceeding to the low-frequency limit h - 0. By means of Eqs. 6

we first replace , wA and qW S by the rate of spontaneous emission, i . We then expand

f(v'), f(v"), r~(v'), and Tj (v") in Taylor series about the velocity v, retaining three

terms of the expansion wherever I appears as a multiplier in Eq. 5, and two terms

when I does not enter. After somewhat lengthy algebraic manipulations and use of

Eqs. 4 we find that

d[v (v) f(v)] 83 2 d df(v)
C (v,v',v") = + I (v) dwd. (7)
rad 2 dv 2 mdv dv

The total value of Crad is obtained by integrating Eq. 7 over all frequencies w of the

low-frequency spectrum and over all angles do in which radiation flows. Since I and

TIW refer to one characteristic wave only, we must sum over both modes of polarization.

Thus,

1 d(v W f) 8 T3 c2  d df
Crad 2 dv 2 mdv dw do. (8)

1,2 W m

As a check on the algebraic manipulations, we multiply Eq. 8 by 4 fv2 dv and integrate
oo v2

over all velocities. We find the correct result, f0 Crad 4rv dv = 0, which shows that

electrons are conserved. Knowing the form of Crad, we can in principle evaluate I

and f from Eqs. 2 and 3 for any radiation mechanism, r , of a plasma subjected to

external fields E, B. Note that all of our results apply in the nonrelativistic limit.

Extension of the results to plasmas with relativistic electrons is straightforward.

The two terms on the right-hand side of Eq. 8 refer to different physical processes.

The first term describes the net rate at which particles leave a certain energy range

as a result of energy loss by spontaneous emission. The second term represents the

rate of "heating" of electrons by the ambient radiation field, I.

Special Cases

(a) Consider a collisionless plasma which is in a steady state in the presence of

the radiation field I , which in part is due to the radiation from the plasma, and in

part to any external sources that may be present. Then, from Eq. 3,

8f - C 0. 
(9)at rad
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Evaluating Eqs. 8 and 9, we obtain

f = constant
f

v  
f f

X exp m 2 vdv ,
8c

where the symbols Z f f denote summation over two polarizations and integrations over

w and 2.

(b) Suppose that in addition to Cr , the electrons make elastic collisions with atomsrade
or ions. If v(v) is the collision frequency, then

1 d
Ccoll = G 2 d

v2 dv2v

2 ( kT df)]v ( n c(v1)

where G = 2m/M with M as the mass of the atom or ion, and T as their temperature.

In the steady state (with E = B = 0 as in case (a)),

Cf = 0 (12)
8t rad coll

Solving, we obtain

L + mk uGv ? 2

kT + f 8
g 2

(13)

G. Bekefi
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B. ELECTRON TEMPERATURE DECAY IN THE AFTERGLOW OF A

PULSED HELIUM DISCHARGE

The Transient Microwave Radiation Pyrometer 1 has been used to study the electron
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Fig. VI-1. Electron temperature decay for varying amounts of added argon impurity.

temperature decay in the helium afterglow. 2

Figure VI-1 illustrates the dependence of the temperature decay on fractional addi-

tions of argon of zero per cent, 0.36 per cent, and 3.67 per cent at a helium pressure

of 0.520 mm Hg. As we have noted, the asymptotic temperature decay rate at this pres-
2

sure should be equal to the rate of destruction of metastable atoms. The increase in

this asymptotic decay rate with increasing argon concentration bears out our hypothesis

that metastable atoms are determining the asymptotic behavior of the temperature

decay. From the observed asymptotic decay rates in Fig. VI-1, a cross section for the
-16 2

argon-metastable destructive collision can be calculated. A value of 2.6 X 10 cm

is obtained which compares reasonably with Biondi's 3 measurement of the argon ioniza-
-17 2

tion cross section in an argon-metastable collision of 9 X 10 cm .

Figure VI-2 shows the temperature decay for lower pressures at which, presumably,

the metastables are lost by diffusion at such a rapid rate that their heating effect is not

felt in the afterglow. The electron temperature decay in this case should now be deter-

mined by elastic recoil energy losses. The theoretical curve for such a decay may be

readily calculated for helium for which the collision probability is known fairly well to

be P = 20p cm-1, where p is in mm Hg. The pressure multiplied by the time is the
be P = ZOp cm , where p is in mm Hg. The pressure multiplied by the time is the
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normalized time variable, so that the curves should superpose if only elastic recoil is

operating to cool the electrons. The curve at p = 0.120 mm Hg displays some residual
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Fig. VI-2. Electron temperature decay for low pressures.

metastable heating, while the curve at p = 0.03 mm Hg displays some apparent additional

cooling. Calculations have indicated that diffusion cooling should not contribute signifi-

cantly in this region.

J. C. Ingraham
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C. MEASUREMENTS OF ELECTRON RELAXATION RATES IN PLASMAS

The thermodynamic state of a plasma can be inferred from its radiation spectrum.

In this report we present measurements of the radiation spectrum in the afterglow of

a plasma. By observing the approach of the spectrum toward one associated with the

equilibrium state, it is possible to infer the relaxation rates to the equilibrium con-

dition. We shall show that in our plasma two relaxation rates are dominant. At high

pressures the relaxation toward a Maxwellian distribution is governed by short-range

electron-atom collisions, while at low pressures the dominant relaxation mechanism

comes from electron-electron impacts.

In previous reportsl'2 we have shown that the microwave radiation spectrum from

weakly ionized plasmas departs significantly from the Kirchhoff-Planck law. The

departure has been shown to be consistent with theory, provided that one assumed a

non-Maxwellian energy distribution for the plasma electrons. The magnitude of the

departure also depends on the energy dependence of the electron-neutral collision fre-

quency for momentum transfer in the energy range where most of the electrons are

situated. By comparing the measured and calculated spectra, it has been possible to

deduce the electron energy distribution function and the mean energy.

Recent measurements further substantiate the above-mentioned results. We meas-

ure the radiation temperature Tr (as defined previously 1 ') of a positive column in argon,

immersed in a dc magnetic field as a function of time in the afterglow of the plasma. A

discharge of l-msec width is pulsed at a frequency of 200 cps, and the radiation temper-
m

ature is measured as a function of magnetic field (B =ob , where wb is the electron

cyclotron frequency), at a fixed time in the afterglow. The measurements were per-
3

formed with the transient radiation pyrometer described in a previous report, and the

measuring frequency was fixed at 6T X 109 rad/sec.

The pyrometer accepts radiation within a 1-p sec gate, which is movable in time

from 10 4sec before the discharge pulse is shut off to 3 msec past this cutoff point. We

take this point to be our reference in time (i.e., t=0). so that when t is negative we

refer to results obtained from a "going" discharge, and when t is positive we refer

to the results obtained in the afterglow.

Some of the results are shown in Fig. VI-3. In all cases the radiation temperature

is shown as a function of frequency or magnetic field for various times in the afterglow;

Po is the pressure reduced to 00C, and I is the discharge current. Figure VI-3a and

VI-3b gives the results at a low pressure for two discharge currents. Figure VI-3c

and VI-3d shows the results for the same currents but at a higher pressure. The depar-

ture of the radiation temperature from the Kirchhoff-Planck law (i. e., the peaks at cyclo-

tron resonance, w = wb) is seen to be decreasing as a function of time in the afterglow.

This is consistent with the interpretation that these peaks are due to non-Maxwellian
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electron velocity distributions. As the discharge pulse is cut off, the electrons relax

to a Maxwellian distribution and the peaks disappear. The approach to a Maxwellian

distribution may be due to electron-electron collisions or electron-neutral collisions.

At low pressures it is the electron-electron collisions that dominate the relaxation

process. Here we would expect the rate of relaxation to be strongly dependent on the

electron density. 4 This is borne out by the results shown in Fig. VI-3a and VI-3b, in

which the peak in Tr is seen to decrease much faster for a discharge current of 34 ma

than for a current of 18 ma. Figure VI-3c and VI-3d shows that the relaxation rate (as

interpreted by the decrease of the peaks in Tr) at a higher pressure, for which electron-

neutral collisions dominate the process, is relatively insensitive to discharge current.

The results can only be interpreted qualitatively, at this time, for two reasons.

First, the radiation temperature does not relate linearly to the distribution function,

and second, we did not measure the electron density in the afterglow. We are now con-

ducting calculations that will enable us to determine the distribution function and the

mean energy of the electrons as a function of time in the afterglow by the methods pre-

viously described.1,'2 We have installed a probe in our discharge tube in order to

measure the electron density in the afterglow. With these results we hope to determine

a time constant for the approach of the electrons to a Maxwellian distribution.

H. Fields, G. Bekefi
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D. VISCOUS DAMPING OF PLASMA WAVES

An attempt will be made to explain the experimental results on propagation and

damping of ion acoustic waves reported by Wong, D'Angelo, and Motley. The momen-

tum transport equations will be modified by the introduction of a viscous force. This

procedure was suggested by a comparison of the wavelength and Coulomb mean-free

path. For a frequency of 105 cps and a phase velocity of 105 cm/sec, the associated
10 3

wavelength is 1 cm. For a particle density of 6 x 10 /cm and a temperature of
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-6 2
2300 0 K, the Debye length squared is approximately 1.8 x 10 cm . Hence, taking the

magnitude of the mean-free path as L = (nk) D, where n is the density, and XD is the

Debye length, we obtain L = 0.2 cm. Because of the similarity of the magnitudes of

wavelength and mean-free path, we suspect that the waves will be strongly viscous-

damped. For the magnitude of the viscosity coefficient we take rn = LVTp, where VT
is the thermal velocity, and p is the mass density. Hence the kinematic viscosity will

be v = /p = LV T .

The equations that will be used to obtain the dispersion relation are the linearized

force and continuity equations and Poisson's equation.

ar± 2 eno 2(1)

- - s m ± E +7 r (1

8n
t +  r =0 (2)at ±

7V E = 4re(n +-n_). (3)

In these equations the particle flux r' is defined as noV±, where V+ is the ion or elec-

tron velocity, and no is the unperturbed particle density; n± is the perturbed particle

density; and pss is the ion or electron sound velocity. For equal electron and ion tem-

peratures we have = m /m_P2 and v2 = m m v2 +. By using Poisson's equation
+

and the continuity equations, the force equations may be written in terms of the perturbed

densities.

2 = V n T wo (n+-n_) + V 8n (4)
at 2 S± P± - at'

where w is the plasma frequency, and

2
41Tn e2 o

=
p± m

By allowing n± to vary as ej(k r - wt) in Eq. 4, the following equations are obtained:

k -  +  p  + kn + +  n = 0

+ (5)
2 22 2 2  2 2

S+n+j-4 k -P +jvwk n=0.p_n+ s_ p_

Setting the determinant of Eq. 5 equal to zero, the following dispersion relation

results:
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2 2

P+ P_ (6)2 2 - jV 2 - k2(2 1. (6)
S + +-

1 2 7 11
In the experiment of Wong and others, w varies from -4 X 10 to 4 X 10 . For

10 3 2 20 2 5
n = 6 X 10 /cm will be approximately 1.8 X 1020, and w , for m /m 10

op_ P +m _
15

will be 1.8 X 10 15 By using this information, as well as the order of magnitude of the

sound velocity and the kinematic viscosity, an approximate equation for the ion waves

can be written from Eq. 6.

22  o
= -2 (7)

2ps -jov+

Setting k = ko + iX, where k indicates the propagation, and C the damping, Eq. 7

yields

k X(t)o 24s+

(8)

3C Y(t),
214

s

where

and

(1+t2 1/2 + 11/2
X(t)= 2

0I+t2 1/2- 1 1/2

Y(t) = 1 t2

In Fig. VI-4 we show the quantities (v+ /s+) C and (1/24s) /k = Vphase/2s + as

functions of (v /24s). It should be mentioned that the phase velocity, from simple

Navier-Stokes theory, rises much more rapidly with increasing w than higher order

theory or experiments indicate, while the damping remains adequately described by

the simple theory. 2 ' 3

In Fig. VI-5 we present the first attempt to fit the damping theory to the experimental
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data (Fig. 2 of Wong et al. ). The data give X ; 0.47 for potassium at a frequency

of 105 cps. At this frequency we choose (v+ /2 ) = 5. Since, from Fig. VI-4,

v +/Fs+ K = 1.96 at this point, we have Ps /v+ = 0.24. This guess is seen to give a

fairly good representation of the experimentally observed damping.

The phase velocity obtained from our fitted data is high because for 4s itself we
s

obtain 2.6 X 105 cm/sec, which is approximately the observed phase velocity. 1 Our

computed phase velocity will vary from 4 X 105 cm/sec at 10 kc/sec almost

linearly to 11 x 105 cm/sec at 100 kc/sec. The fitted point also gives a value of

+ = 11 X 105 cm /sec, which is a correct order of magnitude.

Wong, D'Angelo, and Motley, in their Figure 1, give the experimentally observed

phase velocity as a function of frequency. These data appear to indicate slightly higher

phase velocities for higher frequencies, as well as higher phase velocities for lower

densities. Figure VI-4 shows an increasing phase velocity with frequency and also, if

the frequency is held fixed, an increasing phase velocity with decreasing density, since

+ ~ nXD ~ 1/n.

For the sake of completeness, we shall compute the viscosity from Boltzmann

theory,

4 TkT
+ 3m (9)

In Eq. 9 T is the temperature, k is Boltzmann's constant, m is the ion mass, and T is

the time constant given by Spitzer, 5

m /2(3kT)3/2
=, (10)

8 X .7 14 rrne 4 In A

3/2 3
where A = 12Tr n D 3

For potassium, with n = 6 x 10 /cm and T = 2300*K, we obtain

v+ = 0.883 X 10 5 cm /sec. (11)

Defining Js+ as 2.5 X 105 cm/sec, the measured value of the phase velocity, we

obtain at 100 kc/sec,

= 0.886. (12)

The theoretical curve and the experimental points for C, the damping constant, as

a function of frequency are shown in Fig. VI-6. It is clear that the viscous theory gives

the correct order of magnitude of the damping.
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Fig. VI-6. Damping constant as a function of frequency.

Therefore, at present, it seems that a simple viscous theory can explain the

observations on ion waves without recourse to Landau damping as discussed by Fried

and Gould. 5

H. R. Radoski
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