110 research outputs found

    Clean Earth Action

    Get PDF
    Use of alternative fuels at forefront of Igleheart\u27s environmental effort

    Chaos synchronization in the multi-feedback Ikeda model

    Full text link
    We investigate synchronization between two unidirectionally coupled chaotic multi-feedback Ikeda systems and find both the existence and stability conditions for anticipating, lag, and complete synchronizations.Generalization of the approach to a wide class of nonlinear systems is also presented.Comment: 5 pages. submitte

    Highest Energy Cosmic Rays and results from the HiRes Experiment

    Get PDF
    The status of the field of ultrahigh energy cosmic rays is summarized, from the point of view of the latest results of the High Resolution Fly's Eye (HiRes) Experiment. HiRes results are presented, and compared with those of the Akeno Giant Air Shower Array (AGASA), plus the Telescope Array and Pierre Auger experiments. The HiRes measurements of the cosmic ray spectrum, and the observation of the GZK cutoff are presented. HiRes results on composition, searches for anisotropy, measurement of the proton-air total cross section, and shapes of shower profiles are presented.Comment: 31 pages, 18 figures, submitted to Journal of Physics

    Finite element simulation of three-dimensional free-surface flow problems

    Get PDF
    An adaptive finite element algorithm is described for the stable solution of three-dimensional free-surface-flow problems based primarily on the use of node movement. The algorithm also includes a discrete remeshing procedure which enhances its accuracy and robustness. The spatial discretisation allows an isoparametric piecewise-quadratic approximation of the domain geometry for accurate resolution of the curved free surface. The technique is illustrated through an implementation for surface-tension-dominated viscous flows modelled in terms of the Stokes equations with suitable boundary conditions on the deforming free surface. Two three-dimensional test problems are used to demonstrate the performance of the method: a liquid bridge problem and the formation of a fluid droplet

    The Extremely High Energy Cosmic Rays

    Get PDF
    Experimental results from Haverah Park, Yakutsk, AGASA and Fly's Eye are reviewed. All these experiments work in the energy range above 0.1 EeV. The 'dip' structure around 3 EeV in the energy spectrum is well established by all the experiments, though the exact position differs slightly. Fly's Eye and Yakutsk results on the chemical composition indicate that the cosmic rays are getting lighter over the energy range from 0.1 EeV to 10 EeV, but the exact fraction is hadronic interaction model dependent, as indicated by the AGASA analysis. The arrival directions of cosmic rays are largely isotropic, but interesting features may be starting to emerge. Most of the experimental results can best be explained with the scenario that an extragalactic component gradually takes over a galactic population as energy increases and cosmic rays at the highest energies are dominated by particles coming from extragalactic space. However, identification of the extragalactic sources has not yet been successful because of limited statistics and the resolution of the data.Comment: The review paper including 21 figures. 39 pages: To be published in Journal of Physics

    X-ray background measurements with XMM-Newton EPIC

    Get PDF
    We discuss the methods used to compile a high signal-to-noise dataset representative of both the instrumental and cosmic background signal measured at high galactic latitude by the XMM-Newton EPIC cameras. The characteristics of the EPIC background are described and the potential applications of the derived dataset in general science analysis are outlined. In the case of the cosmic X-ray background, the transition between a hard power-law spectrum (due to the integrated emission of unresolved, largely extragalactic, point sources) and a softer thermal spectrum (produced by hot plasma associated with the Galactic plane and halo) is unambiguously detected around ~1keV. We derive a value for the intensity of the power-law component of 2.15 (+/- 0.26) e-11 erg/sq cm/s/sq deg in the 2-10 keV band (Normalisation at 1keV of 11.1 photons /sq cm/s/sr/keV). The implication is that recent, very deep Chandra observations have resolved ~70 - 90% of the 2-10 keV background into discrete sources. Our measurement is towards the higher end of the range of quoted background normalisations.Comment: 14 pages 11 figures, accepted for A&

    Revising the Local Bubble Model due to Solar Wind Charge Exchange X-ray Emission

    Full text link
    The hot Local Bubble surrounding the solar neighborhood has been primarily studied through observations of its soft X-ray emission. The measurements were obtained by attributing all of the observed local soft X-rays to the bubble. However, mounting evidence shows that the heliosphere also produces diffuse X-rays. The source is solar wind ions that have received an electron from another atom. The presence of this alternate explanation for locally produced diffuse X-rays calls into question the existence and character of the Local Bubble. This article addresses these questions. It reviews the literature on solar wind charge exchange (SWCX) X-ray production, finding that SWCX accounts for roughly half of the observed local 1/4 keV X-rays found at low latitudes. This article also makes predictions for the heliospheric O VI column density and intensity, finding them to be smaller than the observational error bars. Evidence for the continued belief that the Local Bubble contains hot gas includes the remaining local 1/4 keV intensity, the observed local O VI column density, and the need to fill the local region with some sort of plasma. If the true Local Bubble is half as bright as previously thought, then its electron density and thermal pressure are 1/square-root(2) as great as previously thought, and its energy requirements and emission measure are 1/2 as great as previously thought. These adjustments can be accommodated easily, and, in fact, bring the Local Bubble's pressure more in line with that of the adjacent material. Suggestions for future work are made.Comment: 9 pages, refereed, accepted for publication in the proceedings of the "From the Outer Heliosphere to the Local Bubble: Comparisons of New Observations with Theory" conference and in Space Science Review

    Evolution of protein-coupled RNA dynamics during hierarchical assembly of ribosomal complexes

    Get PDF
    Assembly of 30S ribosomes involves the hierarchical addition of ribosomal proteins that progressively stabilize the folded 16S rRNA. Here, we use three-color single molecule FRET to show how combinations of ribosomal proteins uS4, uS17 and bS20 in the 16S 5' domain enable the recruitment of protein bS16, the next protein to join the complex. Analysis of real-time bS16 binding events shows that bS16 binds both native and non-native forms of the rRNA. The native rRNA conformation is increasingly favored after bS16 binds, explaining how bS16 drives later steps of 30S assembly. Chemical footprinting and molecular dynamics simulations show that each ribosomal protein switches the 16S conformation and dampens fluctuations at the interface between rRNA subdomains where bS16 binds. The results suggest that specific protein-induced changes in the rRNA dynamics underlie the hierarchy of 30S assembly and simplify the search for the native ribosome structure
    • 

    corecore