178 research outputs found

    New type of antiferromagnetic polaron and bipolaron in HTc - superconductors

    Full text link
    The possibility of formation of a new type of polaron based on the quantum aniferromagnet (AF) model is reported. We take into account exchange interactions between localized d-d spins of the AF, as well as the p-d interaction of the AF with p-carriers. The energy minimum is found when maximum charge density occurs on every second spin. The formation of such ``comb''-like polarons results from the damping of quantum fluctuations and the appearance of Van Vleck-like staggered magnetization. Such polarons tend to form pairs coupled by an AF ``glue''.Comment: 3 pages 2 figure

    ALLOY BROADENING OF THE NEAR-GAP LUMINESCENCE AND THE NATURAL BAND OFFSET IN SEMICONDUCTOR ALLOYS

    Get PDF
    The inhomogeneous broadening of the near-gap emission (bound excitons (BE) and conduction-band to acceptor (CA)) in semiconductor alloys is reanalysed using the Markoff statistical theory for fluctuations of alloy composition. We give the exact relationship between the linewidth and the Bohr radius of the bound particle. The results of our theory indicate that even in the best GaAlAs samples there is still a significant contribution from other broadening mechanisms. We also show that the linewidth ratio of the CA to BE emission lines may provide a good estimate of the natural band offset in the alloy

    Optical pumping of the electron spin polarization in bulk CuCl

    Full text link
    In CuCl bulk crystal negatively charged excitons (trions XX^-) can be induced by the resonant optical excitation of extra electrons in conduction band minimum. In the case of light polarization and due to the top valence band structure of CuCl only the electrons with spin antiparallel to the direction of the light propagation contribute to the formation of XX^-, while the emerging XX^- can recombine into both possible electron states, with spin parallel and antiparallel to the direction of light propagation. We propose to use this mechanism for optical electronic spin pumping. We describe the dynamics of pumping in terms of density matrix formalism. The coherent pumping laser pulse propagating through the sample is described by Maxwell wave equation coupled to the density matrix evolution equations. The results of our approximate simple model calculations suggest that spin polarization close to 100% can be achieved in time shorter than 100ps.Comment: new extended version, 7 pages, 4 figure

    Structural and electronic properties of Pb1-xCdxTe and Pb1-xMnxTe ternary alloys

    Full text link
    A systematic theoretical study of two PbTe-based ternary alloys, Pb1-xCdxTe and Pb1-xMnxTe, is reported. First, using ab initio methods we study the stability of the crystal structure of CdTe - PbTe solid solutions, to predict the composition for which rock-salt structure of PbTe changes into zinc-blende structure of CdTe. The dependence of the lattice parameter on Cd (Mn) content x in the mixed crystals is studied by the same methods. The obtained decrease of the lattice constant with x agrees with what is observed in both alloys. The band structures of PbTe-based ternary compounds are calculated within a tight-binding approach. To describe correctly the constituent materials new tight-binding parameterizations for PbTe and MnTe bulk crystals as well as a tight-binding description of rock-salt CdTe are proposed. For both studied ternary alloys, the calculated band gap in the L point increases with x, in qualitative agreement with photoluminescence measurements in the infrared. The results show also that in p-type Pb1-xCdxTe and Pb1-xMnxTe mixed crystals an enhancement of thermoelectrical power can be expected.Comment: 10 pages, 13 figures, submitted to Physical Review

    Structure and energetics of the Si-SiO_2 interface

    Full text link
    Silicon has long been synonymous with semiconductor technology. This unique role is due largely to the remarkable properties of the Si-SiO_2 interface, especially the (001)-oriented interface used in most devices. Although Si is crystalline and the oxide is amorphous, the interface is essentially perfect, with an extremely low density of dangling bonds or other electrically active defects. With the continual decrease of device size, the nanoscale structure of the silicon/oxide interface becomes more and more important. Yet despite its essential role, the atomic structure of this interface is still unclear. Using a novel Monte Carlo approach, we identify low-energy structures for the interface. The optimal structure found consists of Si-O-Si "bridges" ordered in a stripe pattern, with very low energy. This structure explains several puzzling experimental observations.Comment: LaTex file with 4 figures in GIF forma

    Topological crystalline insulator states in Pb(1-x)Sn(x)Se

    Full text link
    Topological insulators are a novel class of quantum materials in which time-reversal symmetry, relativistic (spin-orbit) effects and an inverted band structure result in electronic metallic states on the surfaces of bulk crystals. These helical states exhibit a Dirac-like energy dispersion across the bulk bandgap, and they are topologically protected. Recent theoretical proposals have suggested the existence of topological crystalline insulators, a novel class of topological insulators in which crystalline symmetry replaces the role of time-reversal symmetry in topological protection [1,2]. In this study, we show that the narrow-gap semiconductor Pb(1-x)Sn(x)Se is a topological crystalline insulator for x=0.23. Temperature-dependent magnetotransport measurements and angle-resolved photoelectron spectroscopy demonstrate that the material undergoes a temperature-driven topological phase transition from a trivial insulator to a topological crystalline insulator. These experimental findings add a new class to the family of topological insulators. We expect these results to be the beginning of both a considerable body of additional research on topological crystalline insulators as well as detailed studies of topological phase transitions.Comment: v2: published revised manuscript (6 pages, 3 figures) and supplementary information (5 pages, 8 figures

    Ecosystem shift of a mountain lake under climate and human pressure : A move out from the safe operating space

    Get PDF
    A multiproxy approach including chironomid, diatom, pollen and geochemical analyses was applied on short gravitational cores retrieved from an alpine lake (Lacul Balea) in the Southern Carpathians (Romania) to unveil how this lake responded to natural and anthropogenic forcing over the past 500 years.On the basis of chironomid and diatom assemblage changes, and supported by sediment chemical data and historical information, we distinguished two main phases in lake evolution. Before 1926 the lake was dominated by chironomids belonging to Micropsectra insignilobus-type and benthic diatoms suggesting well-oxygenated oligotrophic environment with only small-scale disturbance. We considered this state as the lake's safe operational space. After 1926 significant changes occurred: Tanytarsus lugens-type and T. mendax-type chironomids took over dominance and collector filterers increased until 1970 pointing to an increase in available nutrients. The diatom community showed the most pronounced change between 1950 and 1992 when planktonic diatoms increased. The highest trophic level was reconstructed between 1970 and 1992, while the indicator species of increasing nutrient availability, Asterionella formosa spread from 1982 and decreased rapidly at 1992. Statistical analyses evidenced that the main driver of the diatom community change was atmospheric reactive nitrogen (Nr) fertilization that drastically moved the community towards planktonic diatom dominance from 1950. The transformation of the chironomid community was primarily driven by summer mean temperature increase that also changed the dominant feeding guild from collector gatherers to collector falterers. Our results overall suggest that the speed of ecosystem reorganisation showed an unprecedented increase over the last 100 years; biological systems in many cases underwent threshold type changes, while several system components displayed non-hysteretic change between alternating community composition. We conclude that Lake Balea is outside of its safe operating space today. The main trigger of changes since 1926 was climate change and human impact acting synergically. (C) 2020 The Authors. Published by Elsevier B.V.Peer reviewe

    Isolated oxygen defects in 3C- and 4H-SiC: A theoretical study

    Get PDF
    Ab initio calculations in the local-density approximation have been carried out in SiC to determine the possible configurations of the isolated oxygen impurity. Equilibrium geometry and occupation levels were calculated. Substitutional oxygen in 3C-SiC is a relatively shallow effective mass like double donor on the carbon site (O-C) and a hyperdeep double donor on the Si site (O-Si). In 4H-SiC O-C is still a double donor but with a more localized electron state. In 3C-SiC O-C is substantially more stable under any condition than O-Si or interstitial oxygen (O-i). In 4H-SiC O-C is also the most stable one except for heavy n-type doping. We propose that O-C is at the core of the electrically active oxygen-related defect family found by deep level transient spectroscopy in 4H-SiC. The consequences of the site preference of oxygen on the SiC/SiO2 interface are discussed
    corecore