500 research outputs found

    A site selection model to identify optimal locations for microalgae biofuel production facilities in sicily (Italy)

    Get PDF
    The lack of sustainability and negative environmental impacts of using fossil fuel resources for energy production and their consequent increase in prices during last decades have led to an increasing interest in the development of renewable biofuels. Among possible biomass fuel sources, microalgae represent one of the most promising solutions. The present work is based on the implementation of a model that facilitates identification of optimal geographic locations for large-scale open ponds for microalgae cultivation for biofuels production. The combination of a biomass production model with specific site location parameters such as irradiance, geographical constraints, land use, topography, temperatures and CO2 for biofuels plants were identified in Sicily (Italy). A simulation of CO2 saved by using the theoretical biofuel produced in place of traditional fuel was implemented. Results indicate that the territory of Sicily offers a good prospective for these technologies and the results identify ideal locations for locating biomass fuel production facilities. Moreover, the research provides a robust method that can be tailored to the specific requirements and data availability of other territories. © Research India Publications

    Design of a vertical-axis wind turbine: how the aspect ratio affects the turbine's performance

    Get PDF
    This work analyses the link between the aspect ratio of a vertical-axis straight-bladed (H-Rotor) wind turbine and its performance (power coefficient). The aspect ratio of this particular wind turbine is defined as the ratio between blade length and rotor radius. Since the aspect ratio variations of a vertical-axis wind turbine cause Reynolds number variations, any changes in the power coefficient can also be studied to derive how aspect ratio variations affect turbine performance. Using a calculation code based on the Multiple Stream Tube Model, symmetrical straight-bladed wind turbine performance was evaluated as aspect ratio varied. This numerical analysis highlighted how turbine performance is strongly influenced by the Reynolds number of the rotor blade. From a geometrical point of view, as aspect ratio falls, the Reynolds number rises which improves wind turbine performance

    wind turbine placement optimization by means of the monte carlo simulation method

    Get PDF
    This paper defines a new procedure for optimising wind farm turbine placement by means of Monte Carlo simulation method. To verify the algorithm's accuracy, an experimental wind farm was tested in a wind tunnel. On the basis of experimental measurements, the error on wind farm power output was less than 4%. The optimization maximises the energy production criterion; wind turbines' ground positions were used as independent variables. Moreover, the mathematical model takes into account annual wind intensities and directions and wind turbine interaction. The optimization of a wind farm on a real site was carried out using measured wind data, dominant wind direction, and intensity data as inputs to run the Monte Carlo simulations. There were 30 turbines in the wind park, each rated at 20 kW. This choice was based on wind farm economics. The site was proportionally divided into 100 square cells, taking into account a minimum windward and crosswind distance between the turbines. The results highlight that the dominant wind intensity factor tends to overestimate the annual energy production by about 8%. Thus, the proposed method leads to a more precise annual energy evaluation and to a more optimal placement of the wind turbines

    Flow similitude laws applied to wind turbines through blade element momentum theory numerical codes

    Get PDF
    This paper deals with the analysis of the per- formance of different wind turbines using the Similitude Theory. Wind turbine performance was determined as a function of geometrical similarity coefficient, which is related to all parameters of the Similitude Theory. There- fore, a mathematical model simplification is possible in the 'in similitude' wind turbines comparison. The mathemati- cal model for wind turbine performance is based on BEM Theory, and its efficacy was verified several times by comparing different wind turbine experimental data. The original mathematical model was modified to take into account Similitude Theory parameters. The model is able to determine which wind turbine is most suited to particular design specification. This work presents power and torque curves, power and torque coefficients as functions of rotational speed and wind velocity. All the results are function of the geometrical similarity coefficient. With this methodology it is possible to maximize the power coeffi- cients of a wind turbine, and it is possible to identify a family of wind turbines, geometrically different, but with the same high performances

    Early detection of biochemically occult autonomous thyroid nodules

    Get PDF
    Objective: Autonomously functioning thyroid areas may be associated with subclinical or overt hyperthyroidism, but may exist even in the presence of normal TSH. This study was aimed at comparing the rate of autonomously functioning areas and their cardiac sequelae in patients with nodular goitre studied with the usual and a novel approach. Design and methods: In total 490 adult outpatients with thyroid nodular goitre, living in a mild iodine-deficient area, were selected in our referral centre for thyroid diseases from 2009 to 2014 on the basis of a suspicion of thyroid functional autonomy. They were divided in three groups according to a non-conventional approach (excessive response to thyroxine treatment: group 1) or conventional approach (low/normal TSH with clinical suspicion or low TSH: groups 2 and 3). All patients of the study with the suspicion of thyroid functional autonomy underwent thyroid scan with radioactive iodine (I131) uptake (RAIU). Results: The percentage of confirmed thyroid functional autonomy was 319/490, being significantly higher in group 3 than in groups 1 and 2 (81.5 vs 64.7 vs 52.6%; chi-square P < 0.0001). However, the diagnosis with non-conventional approach was made at a significant earlier age (P < 0.0001). Cardiac arrhythmias as well as atrial fibrillation were similarly detected by conventional and non-conventional approaches (chi-square test: P = 0.2537; P = 0.8425). Conclusions: The hyper-responsiveness to thyroxine treatment should induce the suspicion of thyroid functional autonomy at an early stage, allowing to detect autonomous functioning areas in apparently euthyroid patients

    Heat Exchange Numerical Modeling of a Submarine Pipeline for Crude Oil Transport

    Get PDF
    Abstract The present paper deals with a real issue of the Exxon-Mobil refinery in Augusta (Sicily). The crude oil, which is transported by oil tankers, is transferred through a submarine pipeline where it remains for a long time. In order to predict the transient temperature of the pipe, two numerical approaches were developed. The simplest one was a conductive model, based on the Finite Element Method, implemented by using the ANSYS Thermal FEM software for a first approximation solution. After having carried out an accurate grid resolution study and having evaluated the thermal error, a prediction of thermal profiles and heat fluxes was obtained. Thanks to the axisymmetrics of the physical problem, only a limited portion of the 3D pipe was modelled. The second approach was instead based on the use of a more accurate CFD Finite Volume Model, developed in ANSYS Fluent. In this case, in order to have reasonable calculation time and thanks to the aforementioned axisymetrics, the problem was carried out in 2D. Moreover, both grid and time step sensitivity was evaluated. Accurate buoyancy and turbulence models as well as viscosity and density temperature dependence models were used in order to obtain the most accurate physical modelling. The CFD model was developed basing on codes validated in the scientific literature. The comparison between FEM conductive and CFD results demonstrated the superior accuracy of the CFD, thanks to an accurate modelling of the internal convective motions

    A New Tool to Optimize ICE Performance and Emissions Via 1D Code Coupled with Gas

    Get PDF
    Abstract The aim of this paper is to propose a new strategy to optimize the performance and to reduce the emission levels of Internal Combustion Engines by varying intake valve lift profile and timing. The object of the study was an ICE – SI, GDI, 1.4 l, four cylinders, 16 V, turbocharged. It was equipped with an electrohydraulic VVA system which allows the intake valves to vary, at the same time, lift and timing in order to realize early IVC and/or late IVO. Thanks to this, the engine can always operate in the optimal fluid dynamics conditions in order to achieve the best performance and emission levels. A model of the engine was implemented in GT-Power™ for several operating conditions (partial load, full load, low and high engine speed), and then coupled with a single-objective genetic algorithm, evolved subsequently into a multi-objective genetic algorithm. Two different analysis were carried out: the first one for reducing CO2 emissions at partial load and low engine speed (single-objective optimization), and the second one for increasing the brake torque at full load (multi-objective optimization). The proposed model shows the possibility to quickly find optimal solutions for the test cases considered, and it let the opportunity to be further developed and improved in order to optimize many other parameters of the ICE

    On the Possibility to Run an Internal Combustion Engine on Acetylene and Alcohol

    Get PDF
    Abstract It is well known that acetylene is a high flammable and explosive compound. In comparison with commercial liquid fuels, very wide flammability limits and a low Octane Number have relegated the acetylene into the "iperdetonat" fuels category. Thus, it is impossible to run an internal combustion engine on acetylene without a detonation phenomena control system. The current paper deals with a theoretical and experimental analysis of an internal combustion engine running on acetylene and alcohol. A standard 8 kW spark ignition engine with carburettor was modified with electronic injection control system (ECU) and two standard commercial injectors: one for the acetylene and one for the alcohol. The two injectors were installed using a modified engine intake system. The ECU is able to manage two fuels: acetylene and alcohol. Moreover, an optimization method base on Genetic Algorithms and Neural Networks was used to cerate engine parameters map. Thus, Running an ICE on acetylene and alcohol it is possible to achieve acceptable engine performance and very low pollutant emissions

    Internal combustion engine heat release calculation using single-zone and CFD 3D numerical models

    Get PDF
    Abstract The present study deals with a comparative evaluation of a single-zone (SZ) thermodynamic model and a 3D computational fluid dynamics (CFD) model for heat release calculation in internal combustion engines. The first law, SZ, model is based on the first law of thermodynamics. This model is characterized by a very simplified modeling of the combustion phenomenon allowing for a great simplicity in the mathematical formulation and very low computational time. The CFD 3D models, instead, are able to solve the chemistry of the combustion process, the interaction between turbulence and flame propagation, the heat exchange with walls and the dissociation and re-association of chemical species. They provide a high spatial resolution of the combustion chamber as well. Nevertheless, the computation requirements of CFD models are enormously larger than the SZ techniques. However, the SZ model needs accurate experimental in-cylinder pressure data for initializing the heat release calculation. Therefore, the main objective of an SZ model is to evaluate the heat release, which is very difficult to measure in experiments, starting from the knowledge of the in-cylinder pressure data. Nevertheless, the great simplicity of the SZ numerical formulation has a margin of uncertainty which cannot be known a priori. The objective of this paper was, therefore, to evaluate the level of accuracy and reliability of the SZ model comparing the results with those obtained with a CFD 3D model. The CFD model was developed and validated using cooperative fuel research (CFR) engine experimental in-cylinder pressure data. The CFR engine was fueled with 2,2,4-trimethylpentane, at a rotational speed of 600 r/min, an equivalence ratio equal to 1 and a volumetric compression ratio of 5.8. The analysis demonstrates that, considering the simplicity and speed of the SZ model, the heat release calculation is sufficiently accurate and thus can be used for a first investigation of the combustion process

    energy performance of chp system integrated with citrus peel air steam gasification a comparative study

    Get PDF
    Abstract The aim of this work is to exploit the potential of residual biomass, different from the traditional wood feedstock, by thermochemical gasification process. In particular, citrus peels waste of the juice extraction process, was selected since it is a typical local Sicilian residue. The citrus peel conversion performances in air-steam gasification process were evaluated and compared with those obtained with pinewood as feedstock. Experimental activities of air-steam gasification were carried out in a bench-scale fluidized bed reactor at 1023 K, for both citrus peel and pinewood, varying the steam to biomass ratio (S/B). A simulation model of the experimental facility was developed in order to find a useful tool to realize the virtual scale-up of the system with downstream syngas utilization. The cold gas efficiency (CGE) and the net cold gas efficiency (CGE net ) were calculated to define the best gasification conditions. Results showed that using pinewood a very low reactivity can be observed, showing a very low net CGE. The highest net CGE for citrus peel was observed at S/B = 0.5, while for pinewood the addition of water did not improve the net CGE. Finally, an integration of the citrus peel gasification system with a commercial CHP unit was proposed and the efficiencies were evaluated
    • …
    corecore